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ABSTRACT

Deep learning, especially in the form of convolutional neu-
ral networks (CNNs), has triggered substantial improvements
in computer vision and related fields in recent years. This
progress is attributed to the shift from designing features and
subsequent individual sub-systems towards learning features
and recognition systems end to end from nearly unprocessed
data. For speaker clustering, however, it is still common to
use handcrafted processing chains such as MFCC features and
GMM-based models. In this paper, we use simple spectro-
grams as input to a CNN and study the optimal design of those
networks for speaker identification and clustering. Further-
more, we elaborate on the question how to transfer a network,
trained for speaker identification, to speaker clustering. We
demonstrate our approach on the well known TIMIT dataset,
achieving results comparable with the state of the art– without
the need for handcrafted features.

Index Terms— Speaker Identification, Speaker Cluster-
ing, Convolutional Neural Network

1. INTRODUCTION

Automatic speaker recognition is an important key technol-
ogy on the way to semantic multimedia understanding by ma-
chines. It comes in several flavors: For example, speaker
identification refers to the task of inferring the speaker’s iden-
tity of a new utterance, given a set of known voice models.
Speaker clustering describes the task of telling who spoke
when for a sequence of utterances, without prior knowledge
of neither the number nor identities of speakers [1]. The clus-
tering task is substantially more complex and hence studies
show that this increased complexity leads to error rates an
order of magnitude higher than for respective identification
tasks even on very clean and plentiful data [2][3]. This paper
is concerned with the advancement of pure speaker recogni-
tion capabilities in order to close this apparent gap, and there-
fore considers an experimental setup apart from additionally
complicating application-specific effects (like e.g. channel
mismatch, un-pure segmentation, background noise) to focus
on the single question: How to capture the essence of a voice
reliably and robustly?

Due to the multiscale nature of speech [4], this fundamen-
tal speaker recognition task per se poses hard challenges on
pattern recognition systems: Speech segments not only con-
vey the identity of a speaker, but also content (phonemes,
forming words and sentences), emotion, origin (cultural, re-
gional), health and age status (voices vary with the physio-
logical condition of the vocal tract) as well as possibly back-
ground noise (channel characteristics, background sounds, in-
terfering speech). The respective layers of information are
convoluted into the single-dimensional time domain signal.

Traditionally, the speaker identification task has been ap-
proached using Gaussian Mixture Models (GMMs) on Mel
Frequency Cepstrum Coefficient feature vectors (MFCCs)
[5]. More recently, this framework has been extended using
joint factor analysis [6] and intermediate vectors (i-vectors)
[7] to form compact, fixed-length and maximally speaker-
specific representations of an utterance. Despite being the
state-of-the-art approach and well-working industry standard,
this approach in principle has major shortcomings: Using
MFCC feature vectors, the all-purpose answer for all audio
analysis tasks [8], no specific voice-related characteristics of
the speech signal despite the gross spectral envelope of short
frames are exploited. Specifically, no speaker-discriminating
features are sought, and some (as e.g. pitch information) are
even knowingly neglected.

Speaker clustering (also called speaker diarization if seg-
mentation into speaker-specific segments and clustering of
these segments into speaker-specific groups is approached si-
multaneously) usually builds upon the same methods used for
speaker identification [9]. Recent approaches rely on enriched
input data: The very good results of [10] for rich transcrip-
tion of e.g. meetings, lectures or TV programs are based
on multiple distant microphone (multi-stream) processing
techniques in order to cope with challenges like overlapping
speech; other works incorporate additional modalities like
accompanying video to extend the technology’s application
to scenario[s] much more difficult than the ones used so far
[11]. These efforts have made speaker identification and clus-
tering an application-ready technology in several domains
of practical relevance. They have however done so by care-
fully engineering the respective systems to cope with certain
challenges of the environment, e.g. the behavior of multiple
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speakers and interfering sound sources, besides improving
the core voice recognition capabilities.

In this paper, we propose a novel solution to improve the
speaker recognition pipeline. We apply Convolutional Neural
Networks (CNNs) [12] on spectrograms in order to be able
to learn speaker-specific features from a rich acoustic source
representation. We evaluate our method on a well-known and
acoustically easy database and experimental setup in order to
show improvement in pure voice recognition capability apart
from application-dependent nuisances. Initial results are on
par with state of the art benchmark results, using a completely
different and much less fine-tuned approach than conventional
systems. The rest of this paper is organized as follows: Sec-
tion 2 describes our approach and the relevant literature in
detail. We start with the task of speaker identification and
later move on to speaker clustering. Section 3 then reports on
our experimental setup and results of a series of evaluations.
Section 4 contains the conclusions and areas for future work.

2. A CNN APPROACH TO VOICE RECOGNITION

2.1. Related work

Convolutional neural networks are a variant of deep learning
approaches that remove the necessity of handcrafted feature
extraction on inputs with local correlation structure such as
images or the spatio-temporal dependencies of spectrograms.
They have become a standard method for many pattern recog-
nition tasks at least since [13], including speech processing
[14]. For example, Abdel-Hamid et al. show how the time-
dependency of successive frames of speech relates to the con-
volutional filters in CNNs [15]. In [16], Lee et al. demonstrate
(using a different type of Deep Learning model) how spectro-
grams can be used as input to diverse audio recognition tasks
including speaker identification. McLaren et al. recently built
a speaker recognition system that used senone probabilities
computed by a CNN for speaker recognition, and compared it
favorably with an i-vector approach [17].

Chen et al. trained a siamese deep network to directly
compare two voice segments discriminatively [18]. Instead
of using the feature learning capabilities of a CNN, they rely
on MFCC features. Yella et al. also use the idea of speaker
discriminative training and derive speaker-specific features
from the hidden layer of a neural network of just 3 layers,
which they subsequently feed into a GMM/HMM system for
speaker clustering [19]. This idea of speaker embeddings is
further explored by Rouvier, Bousquet and Favre with a non-
convolutional deep network using a 61440 dimensional super-
vector obtained from a Gaussian Mixture Universal Back-
ground Model (GMM-UBM) as input [20]. In contrast, we
propose to learn the features directly from spectrograms by
using CNNs trained for speaker identification and then use
one of the post-convolutional layers as feature representation.

Fig. 1. The basic architecture we used in all our experi-
ments. F × T in the convolution layers correspond to the
frequency×time filter applied.

2.2. Speaker identification by CNNs

CNNs extend the well-known idea from image processing of
filters as weighted sums of pixels, by making the filter coef-
ficients learnable. They consist of several such convolutional
layers which apply a learned set of filters to subsequent small
local parts of the input (e.g. a 3× 3 area, which is then repli-
cated over the whole input space). Each convolutional layer is
followed by a max-pooling layer, that generates a lower reso-
lution version of the convolutional layer’s activations by tak-
ing the maximum filter activation out of e.g. a 2× 2 window.
This ensures some degree of shift and distortion invariance.
Finally, fully connected layers combine all outputs of the last
max-pooling layer to do the classification [14].

By using CNNs, we circumvent the necessity of strongly
preprocessing the raw audio data and thereby losing possibly
valuable information. In contrast, our approach enables the
network to choose the necessary features specifically for the
identification task from a wide range of available possibili-
ties. Given labeled utterances, we are able to train the network
from end to end (starting from spectrograms as in [16]).

Our architecture (see Fig. 1) is based on [21]: The net-
work has 32 and 64 filters, respectively, for its two convolu-
tional layers of size F ×T for the frequency (F ) and time (T )
axis. We evaluate the optimal filter sizes F and T in section



3.1. Each convolutional layer is followed by a max-pooling
layer with pooling size 4 × 4 and stride 2 × 2 (during evalu-
ations, we also tried pooling and stride in only on direction).
The network is completed by two dense layers with 10·ns and
5 · ns neurons respectively, where ns is the number of speak-
ers to be identified. We use rectified linear units as activation
functions in all layers [22] and apply softmax to the output.
To prevent overfitting, we include a dropout layer between the
dense layers with a dropout rate of 0.5. The basic architecture
remains always the same, we only increase its complexity as
we increase the number of speakers to be identified.

The input to the network is constructed as follows:
First, we compute a mel-spectrogram with 128 elements
in frequency direction for each sentence of the data set us-
ing the python library librosa [23]. We have 16kHz
sampling rate, 1024 samples FFT window length and 160
samples as hop length. We then perform dynamic range
compression of the spectrograms by applying the elemen-
twise function f(x) = log(1 + C · x) as in [21], with
C = 10′000. Second, we extract one second long snip-
pets of non-overlapping pieces from the spectrograms and
use these images of 128 × 100 pixels the as basic input to
the CNN. The network is trained using minibatch gradient
descent (batch size 128) with Nesterov momentum, using
cross-entropy as the loss function. To achieve a high diversity
in the composition of the minibatches, a random sentence in
the training set is selected, and from this a random snippet of
one second is used. A minibatch consists of 128 such ran-
domly chosen snippets. For building and training the CNN,
we use the Lasagne library [24].

2.3. Speaker clustering by identification networks

For the speaker clustering task, we use a two-step approach:
First, we train a standard speaker identification CNN as de-
scribed above, but with a number of target speakers consid-
erably larger than the expected maximal number of speaker
clusters (e.g., 500 target speakers, if later on < 100 speaker
clusters are expected). We then evaluate the clustering perfor-
mance using either the activations of a specific hidden layer
(L5 or L7 according to Fig. 1) or the final softmax layer L8 of
this trained speaker identification network as speaker specific
features for the clustering task. We build these representations
by creating spectrograms for each utterance to be clustered,
feeding all respective non-overlapping, subsequent, one sec-
ond long snippets to the identification network and receiving
the activations of either a hidden or the softmax layer.

The ”why” of using any post-convolution layer’s acti-
vation follows the same reasoning as with other embedding
methods like e.g. word embeddings in text analysis [25]: The
hidden layers gather relevant features to solve a related task
(here: speaker identification), and thus their activations serve
as higher-level representations of the subject (here: voice).
To use the softmax layers activation instead can be motivated

as follows: If a pre-trained network encounters an unknown
speaker, the produced feature vector should show a probabil-
ity distribution over multiple speakers (as in cohort modeling
[26]), and different snippets from the same speaker should
show a similar distribution.

As a second step, we use the following higher-level fea-
tures as input to a standard clustering algorithm to arrive at
a final partitioning and number of speakers of the utterances
to cluster: We average individual snippets representations
to construct a feature vector per utterance from the possibly
multiple snippets of this utterance, and then cluster these
utterance-vectors (see section 3.3 for details).

3. EXPERIMENTAL SETUP AND RESULTS

Our experiments replicate the exact setup of [2] on the TIMIT
dataset [27] to allow for comparison. The dataset contains
studio quality recordings of 630 speakers (192 female, 438
male), sampled at 16kHz, covering the eight major dialects
of American English. Each speaker reads ten phonetically
rich sentences, from which we use six for training, two for
validation, and two for testing. We train CNNs to perform
speaker identification on a subset of 100 speakers as well as
on the full dataset.

We carry out three experiments: First, we examine the
optimal convolutional filter dimension. Second, we evaluate
the speaker identification performance of our network on the
whole TIMIT test set using the optimal convolutional filters.
Third, we evaluate the performance on the clustering task us-
ing the pre-trained speaker identification network.

3.1. Frequency- vs. time convolution

In this experiment, we evaluate the optimal dimension for our
convolutional filters and the associated pooling and stride of
the max-pooling layers (L2 and L4). The first convolutional
filter does convolutions of F × T pixels in the frequency and
time domain, respectively, and thus is active for patterns of
maximal extension F × T . Filters along the different direc-
tions (time only, frequency only, and both) have been tested,
together with varying sizes among these directions. To be able
to quickly test different filters we used a network for identify-
ing only 10 speakers. Filters with pooling and stride in both
directions achieve a good result on the identification task.
When using filters only in time or frequency direction with
corresponding single-directional pooling and stride, compa-
rable results are reached, but the networks get much bigger.
Astonishingly, a filter in frequency direction with pooling and
stride in both directions also accomplishes good results. A fil-
ter in time direction with pooling and stride in both directions
on the other hand performs clearly worse.

A 2D filter with pooling and stride in both directions is
suitable to capture features of both dimensions, which makes
it intuitively more capable and more easily interpretable.



Additionally, it results in considerably smaller networks (be-
cause of the 2D dimensionality reduction during pooling).
Thus, we chose a 4 × 4 filter with pooling 4 × 4 and stride
2× 2 for our other experiments.

3.2. Speaker identification performance

In this experiment we show the results for the identification
task using all speakers from the TIMIT dataset. To ensure
enough training data, we use 8 of the 10 sentences for each
speaker for training. The remaining 2 sentences, correspond-
ing to approximately 5 seconds, are used as test data. We do
not use any validation data in this experiment. We split the
test data for one speaker into non-overlapping snippets of one
second length (if the remainder of an utterance is shorter than
one second, it is ignored). These snippets are then fed to the
network, and the arithmetic mean over all output vectors is
calculated. The element with the highest value corresponds
with the assigned speaker.

We achieve an accuracy of 97.0%, corresponding to 19
misidentified speakers. Using the geometric instead of the
arithmetic mean yields similar results, whereas using the
maximum performs slightly worse. To our knowledge, this
is the highest accuracy achieved using neural networks for
this task on this dataset. However, other works achieve nearly
perfect accuracy by using GMMs [28][29].

3.3. Speaker clustering

Based on our identification network, we evaluate here whether
it is possible to cluster unknown speakers using the activa-
tions of an upper (dense or softmax) layer of a pre-trained
identification CNN as a feature vector. Fig. 2 visualizes the
individual output vectors produced by the snippets from 5
unknown speakers (i.e., never encountered during original
indentification-targeted training) for the first dense layer L5
and the softmax layer L8 in a network trained to recognize
100 speakers, using t-SNE [30] with cosine metric.

Fig. 2. t-SNE plots based on the output vectors of the softmax
layer L8 (left) and the first dense layer L5 (right). Different
colors correspond to different speakers.

For each speaker we have about 25 seconds of audio cor-
responding to 25 snippets. It is clearly visible that segments

of the same speaker cluster together, and especially for the
first dense layer L5 a good separation is observed.

Next, we examine the quality of this clustering approach
when applying hierarchical clustering to a higher number of
speakers. We use the misclassification rate (MR) to evaluate
cluster quality [31]:

MR =
1

N

Ns∑
j=1

ej . (1)

Where N is the total number of audio segment, Ns the num-
ber of speakers and ej the number segments of speaker j that
are assigned incorrectly. The MR takes ranges from 0 (per-
fect assignment) to 1 (all segments are wrongly assigned). We
train identification networks on a training set of 100 and 590
speakers for comparison, and calculate the output vectors for
all non-overlapping snippets of sentences for never encoun-
tered during training test sets of 20 and 40 speakers. In order
to incorporate the knowledge of snippets belonging to certain
sentences, we build the mean over all segments of 8 (=first ut-
terance) and 2 (=second utterance) sentences for each speaker,
which results in 2 feature vectors for each speaker. This is in
accordance with [2], whose experimental setup we adopt in
detail in order to be comparable.

Agglomerative hierarchical clustering is then applied to
these speaker representations using complete linkage with the
cosine metric. The results in Tab. 1 are obtained for the op-
timal cut-off performing a stepwise hierarchical clustering.
The best result for 20 speakers with a MR of 0.1 is visual-
ized using a dendrogram in Fig. 3.

20 speakers 40 speakers

Layer MR 100 MR 590 MR 100 MR 590

L5: dense 0.100 0.100 0.300 0.125

L7: dense 0.100 0.100 0.325 0.050

L8: softmax 0.450 0.250 0.700 0.450

Table 1. Results of the clustering experiment showing the
misclassification rate for representations taken from different
upper layers of two networks trained on 100 and 590 speakers.
The clustered speakers were unknown to both networks.

As suggested already by the results in Fig. 2, MR is op-
timized when using the output of dense layers above the con-
volution and below the final softmax. We attribute this to the
fact that the hidden layers L5 and L7 portray a general repre-
sentation of a speaker (because of the discriminative training
to segregate speakers), and L7 is the highest-level such repre-
sentation. The softmax layer L8 on the other hand represents
a speaker by a probability distribution that can be likened
to a linear combination of a multitude of unrelated speakers
spanning the speaker space. The best results are obtained by



Fig. 3. The dendrogram shows the hierarchical clustering per-
formed on 20 speakers based on the activations of the sec-
ond hidden layer L7 of an identification network trained on
a training set of 590 speakers. Each leaf node corresponds
to the mean over all segments of either 8 or 2 sentences of
the speaker. The optimal cut is set where the MR reaches its
lowest value (in this case MR = 0.1). A label starting with
M denotes a male speaker, F denotes female, and the colors
correspond to different speakers.

clustering on the outputs of the second dense layer L7 of a
network trained for classifying many (590) speakers: On the
dataset with 20 speakers we achieve a MR of 0.1 and with 40
speakers 0.05. In [2] a MR of 0.0 and 0.065 was reported re-
spectively using a MFCC-GMM baseline of 0.125, showing
that our results using the speaker embedding (L7) are on par,
and the cohort modeling (L8) clearly worse.

4. CONCLUSION AND FUTURE WORK

In this paper, we have investigated whether it is feasible
to identify speakers using features generated by a CNN,
and to cluster unknown speakers using the activations of
post-convolutional layers of pre-trained speaker identifica-
tion CNNs. The clustering performance of this approach
is on par with todays best systems, when using the output
of the high level dense layers (speaker embedding) instead
of the softmax layer (cohort modeling). This is remarkable
because no speech-specific preprocessing has been applied
(e.g., silence removal, detection and removal of unvoiced
speech): the presented approach is rather un-tuned. We thus
effectively showed that the learned features by the CNN are
relevant to recognize unknown speakers, with potential for
future improvements.

Future work will consist of further exploring speaker
recognition as a sequence learning task using representa-
tion learning approaches like recurrent neural networks. It
is particularly interesting how discriminative training can be
applied to the per se unsupervised learning task of speaker
clustering, e.g. using a siamese architecture. Additionally,
further investigations concerning the directions of the convo-

lutional filters, pooling and stride are valuable to determine
why 1D and 2D operations seem to perform comparable to
each other, and how such filters could be interpreted in terms
of auditory processing of the time-evolution of speech.
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