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Abstract. The existence of adversarial attacks on convolutional neural
networks (CNN) questions the fitness of such models for serious applica-
tions. The attacks manipulate an input image such that misclassification
is evoked while still looking normal to a human observer—they are thus
not easily detectable. In a different context, backpropagated activations
of CNN hidden layers—“feature responses” to a given input—have been
helpful to visualize for a human “debugger” what the CNN “looks at”
while computing its output. In this work, we propose a novel detection
method for adversarial examples to prevent attacks. We do so by track-
ing adversarial perturbations in feature responses, allowing for automatic
detection using average local spatial entropy. The method does not al-
ter the original network architecture and is fully human-interpretable.
Experiments confirm the validity of our approach for state-of-the-art at-
tacks on large-scale models trained on ImageNet.
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1 Introduction

The success of deep neural nets for pattern recognition [35] has been a main driver
behind the recent surge of interest in AI. A substantial part of this success is due
to the Convolutional Neural Net (CNN) [20,5] and its descendants, applied to
image recognition tasks. Respective methods have reached the application level
in business and industry [38] and lead to a wide variety of deployed models for
critical applications like automated driving [2] or biometrics [46].

However, concerns regarding the reliability of deep neural networks have been
raised through the discovery of so-called adversarial examples [41]. These inputs
are specifically generated to “fool” [28] a classifier by visually appearing as some
class (to humans), but being misclassified by the network with high confidence
through the addition of barely visible perturbations (see Figure 1). The perturba-
tions are achieved by an optimization process on the input: the network weights
are fixed, and the input pixels are optimized for the dual criterion of (a) classify-
ing the input differently than the true class, and (b) minimizing the changes to
the input. A growing body of literature confirms the impact of this discovery on
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practical applications of neural nets [1]. It raises questions on how—and in what
respect different from humans—they achieve their performance, and threatens
serious deployments with the possibility of tailor-made adversarial attacks.

For instance, Su et al. [40] report on successfully attacking neural networks by
modifying a single pixel. The attack works without having access to the internal
structure nor the gradients in the network under attack. Moosavi-Dezfooli et al.
[27] furthermore show the existence of universal adversarial perturbations that
can be added to any image to fool a specific model, whereas transferability of
perturbations from one model to another is for example shown by Xu et al. [44].
The impact of similar attacks extends beyond classification [26], is transferable to
other modalities than images [6], and also works on models distinct from neural
networks [31]. Finally, adversarial attacks have been shown to work reliably even
after perturbed images have been printed and captured again via a mobile phone
camera [18]. Apparently, such research touches a weak spot.

On the other hand, there is a recent interest in the interpretability of AI
agents and in particular machine learning models [42,30]. It goes hand in hand
with societal developments like the new European legislation on data protection
that is impacting any organization using algorithms on personal data [13]. While
neural networks are publicly perceived as “black boxes” with respect to how they
arrive at their conclusions [15], several methods have been developed recently
to allow insight into the representation and decision surface of a trained model,
improving interpretability. Prime candidates amongst these methods are feature
visualization approaches that make the operations in hidden layers of a CNN
visible [45,37,29]. They can thus serve a human engineer as a diagnostic tool in
support of reasoning over success and failure of a model on the task at hand.

In this paper, we propose to use a specific form of CNN feature visualization,
namely feature response maps, to not only trace the effect of adversarial inputs
on algorithmic decisions throughout the CNN; we subsequently also use it as
input to a novel automated detection approach, based on statistical analysis of
the feature responses using average of image local spatial entropy. The goal is to
decide if a model is currently under attack by the given input. Our approach has
the advantage over existing methods of not changing the network architecture,
i.e., not affecting classification accuracy; and of being interpretable both to hu-
mans and machines, an intriguing property also for future work on the method.
Experiments on the validation set of ImageNet [34] with VGG19 networks [36]
shows the validity of our approach for detecting various state-of-the-art attacks.

Below, Section 2 reviews related work in contrast to our approach. Section 3
presents the background on adversarial attacks and feature response estimation
before Section 4 introduces our approach in detail. Section 5 reports on experi-
mental evaluations, and Section 6 concludes with an outlook to future work.

2 Related work

Work on adversarial examples for neural networks is a very active research field.
Potential attacks and defenses are published at a high rate and have been sur-
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veyed recently by Akhtar and Mian [1]. Amongst potential defenses, directly
comparable to our approach are those that focus on the sole detection of a pos-
sible attack and not on additionally recovering correct classification.

On one hand, several detection approaches exist that exploit specific abnor-
mal behavioral traces that adversarial examples leave while passing through a
neural network: Liang et al. [22] consider the artificial perturbations as noise in
the input and attempt to detect it by quantizing and smoothing image filters.
A similar concept underlies the SqueezeNet approach by Xu et al. [43], that
compares the network’s output on the raw and filtered input, and raises a flag
if detecting a large difference between both. Feinman et al. [9] observe the net-
work’s output confidence as estimated by dropout in the forward pass [11], and
Lu et al’s SafetyNet [23] looks for abnormal patterns in the ReLU activations of
higher layers. In contrast, our method performs detection based on statistics of
activation patterns in the complete representation learning part of the network
as observed in feature response maps, whereas Li and Li [21] directly observe
convolutional filter statistics there.

On the other hand, a second class of detection approaches trains sophisticated
classifiers for directly sorting out malformed inputs: Meng and Chen’s MagNet
[24] learns the manifold of friendly images, rejects far away ones as hostile and
modifies close outliers to be attracted to the manifold before feeding them back
to the network under attack. Grosse et al. [14] enhance the output of an at-
tacked classifier by an additional class and retrain the model to directly classify
adversarial examples as such. Metzen et al. [25] have a similar goal but target it
via an additional subnetwork. In contrast, our method uses a simple threshold-
based detector and pushes all decision power to the human-interpretable feature
extraction via the feature response maps.

Finally, as shown in [1], different and mutually exclusive explanations for
the existence of adversarial examples and the nature of neural network decision
boundaries exist in the literature. Because our method enables a human investi-
gator to trace attacks visually, it can be helpful in this debate in the future.

3 Background

We briefly present adversarial attacks and feature response estimation in general
before assembling both parts into our detection approach in the next Section.

3.1 Adversarial attacks
The main idea of adversarial attacks is to find a small perturbation for a given
image that changes the decision of the Convolutional Neural Network. Pioneering
work [41] demonstrated that negligible and visually insignificant perturbations
could lead to considerable deviations in the networks’ output. The problem of
finding a perturbation η for a normalized clean image I ∈ Rm , where m is the
image width × height, is stated as follows [41]:

min
η

∥η ∥2 s.t. C (I +η) ̸= ℓ ; I +η ∈ [0,1]m (1)
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One pixel attack [40]:
Predictions: Hornbill Difference Spotlight

FGSM [12]:
Predictions: Gyromitra Difference Trafic light

DeepFool [28]:
Predictions: Handkerchief Difference Lampshade

Figure 1: Examples of different state-of-the-art adversarial attacks on a VGG19
model: original image and label (left), perturbation (middle) and mislabeled
adversarial example (right). In the middle column difference of zero is encoded
white and maximum difference is black because of visual enhancement.

where C (.) presents the classifier and ℓ is the ground truth label. Szegedy et al.
[41] proposed to solve the optimization problem in Equation 1 for an arbitrary la-
bel ℓ′ that differs from the ground truth to find the perturbation. However, box-
constrained Limmited-memory Broyden–Fletcher–Goldfarb–Shanno (L-BFGS)
[10] is alternatively used to find perturbations satisfying Equation 1 to improve
computational efficiency. Optimization based on the L-BFGS algorithm for find-
ing adversarial attacks are computational inefficient compared with gradient-
based methods. Therefore, we use a couple of gradient-based attacks, a one-pixel
attack, and boundary attack to compute adversarial examples (see Figure 1).

Fast Gradient Sign Method (FGSM) [12] is a method suggested to compute
adversarial perturbations based on the gradient ∇I J (θ, I ,ℓ) of the cost function
with respect to the original image pixel values:

η= ϵ sign(∇I J (θ, I ,ℓ)) (2)

where θ represents the network parameters and ϵ is a constant factor that con-
strains the max-norm l∞ of the additive perturbation η. The ground truth label
is presented by ℓ in Equation 2. The sign function is Equation 2 computes the
elementwise sign of the gradient of the loss function with respect to the input
image. Optimizing the perturbation in Equation 2 in a single step is called Fast
Gradient Sign Method (FGSM) in the literature. This method is a white box
attack, i.e. the algorithm for finding the adversarial example requires the infor-
mation of weights and gradients of the network.



Trace and Detect Adversarial Attacks on CNNs 5

Gradient attack is a simple and straightforward realization of finding adver-
sarial perturbations in the FoolBox toolbox [33]. It optimizes pixel values of an
ori ginal image to minimize the ground truth label confidence in a single step.

One pixel attack [40] is a semi-black box approach to compute adversarial
examples using differential evolution [39]. The algorithm is not white box since
it does not need the gradient information of the classifier; however, it is not fully
black box as it needs the class probabilities. The iterative algorithm starts with
randomly initialized parent perturbations. The generated offspring compete with
their parent at each iteration, and the winners advance to the next step. The
algorithm stops when the ground truth label probability is lower than 5%.

DeepFool [28] is a white box iterative approach in which the closest direction to
the decision boundary is computed in every step. It is equivalent to finding the
corresponding path to the orthogonal projection of the data point onto the affine
hyperplane which separates the binary classes. The initial method for binary
classifiers can be extended to a multi-class task by considering it as multiple one-
versus-all binary classifications. After finding the optimal updates toward the
decision boundary, the perturbation is added to the given image. The iterations
continue with estimating the optimal perturbation and apply it to the perturbed
image from the last step until the network decision changes.

Boundary attack is a reliable black-box attack proposed by Brendel et al. in [3].
The iterative algorithm already starts with an adversarial image and iteratively
optimize the distance between this image and the original image. It searches for
an adversarial example with minimum distance from the original image.

3.2 Feature response estimation

The idea of visualizing CNNs through feature responses is to find out which
region of the image leads to the final decision of the network. Computing feature
responses enhances the interpretability of the classifier. In this paper, we use
this visualization tool to track the effect of the adversarial attacks on a CNN’s
decision as well as to detect perturbed examples automatically.

Erhan et al. [8] used backpropagation for visualizing feature responses of
CNNs. This is implemented by evaluating an arbitrary image in the forward
pass, thereby retaining the values of activated neurons at the final convolutional
layer, and backpropagating these activations to the original image. The feature
response has higher intensities in the regions that cause larger values of activation
in the network (see Figure 2). The information of max-pooling layers in the
forward pass can further improve the quality of visualizations. Zeiler et al. [45]
proposed to compute “switches”, the position of maxima in all pooling regions,
and then construct the feature response using transposed convolutional [7] layers.

Ultimately, Springenberg et al. [37] proposed a combination of both methods
called guided backpropagation. In this approach, the information of “switches”
(max-pooling spatial information) is kept, and the activations are propagated
backwards with the guidance of the “switch” information. This method leads to
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One pixel attack [40]:
Predictions: Eskimo dog Feature response Thimble Feature response

FGSM [12]:
Predictions: Submarine Feature response Traffic light Feature response

DeepFool [28]:
Predictions: Disc brake Feature response Dome Feature response

Figure 2: Effect of adversarial attacks on feature responses: original image and
feature response (left), perturbed versions (right).

the best performance in network innards visualization, therefore we use guided
backpropagation for computing feature response maps in this paper.

4 Human-interpretable detection of adversarial attacks

After reviewing the necessary background in the last Section, we will now present
our work on tracing adversarial examples in feature response maps, which in-
spired a novel approach to automatic detection of adversarial perturbations in
images. Using visual representations of the inner workings of neural network in
this manner additionally provides a human expert guidance in developing deep
convolutional networks with increased reliability and interpretability.

4.1 Tracing adversarial attacks in feature responses

The research question followed in this work is to obtain insight into the reasons
behind misclassification of adversarial examples. Their effect in the feature re-
sponse of a CNN is for example traced in Figure 2. The general phenomenon
observed in all experiments is the broader feature response of adversarial ex-
amples. In contrast, Figure 2 demonstrates that the network looks at a smaller
region of the image—is more focused—in case of not manipulated samples.

The adversarial images are visually very similar to the original ones. How-
ever, they are not correctly recognizable by deep CNNs. The original idea which
triggered this study is that the focus of CNNs changes during an adversarial
attack and lead to the incorrect decision. Conversely, the network makes the
correct decision once it focuses on the right region of the image. Visualizing the
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Original Adversarial Original Adversarial

Image:

Feature response:

Local spatial entropy:
Figure 3: Input, feature response and local spatial entropy for clean and per-
turbed images, respectively.

feature response provides this and other interesting information regarding the
decision making in neural networks: for instance, the image of the submarine
in Figure 2 can be considered a good candidate for an adversarial attack since
the CNN is making the decision based on an object in the background (see the
feature response of the original submarine in Figure 2).

4.2 Detecting adversarial attacks using spatial entropy

Experiments for tracing the effect of adversarial attacks on feature responses
thus suggested that a CNN classifier focuses on a broader region of the input
if it has been maliciously perturbed. Figure 2 demonstrates this connection for
decision making in case of clean inputs compared with manipulated ones. The
effect of adversarial manipulation is visible in the local spatial entropy of the gray-
scale feature responses as well (see Figure 3). The feature responses are initially
converted to gray scale images, and local spatial entropies are computed based
on transformed feature responses as follows [4]:

Sk =−∑
i

∑
j

hk (i , j ) log2(hk (i , j )) (3)

where Sk is the local spatial entropy of a small part (patch) of the input image
and hk represents the normalized 2D histogram value of the k th patch. The
indices i and j scan through the height and width of the image patches. The
patch size is 3×3 and the same as the filter size of the first layer of the used CNN
(VGG19 [36]). The local spatial entropies of corresponding feature responses are
presented in Figure 3, and their difference for clean and adversarial examples
suggests a likely chance to detect perturbed images based on this feature.
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(a) Histogram (b) ROC curves

Figure 4: a) Distribution of average local spatial entropy in clean images (green)
versus adversarial examples (red) as computed on the ImageNet validation set
[34]. b) Receiver operating characteristic (ROC) curve of the performance of our
detection algorithm on different attacks.

Accordingly, we propose to use the average local spatial entropy of an image
as the final single measure to decide whether an attack has occurred or not. The
average local spatial entropy S̄ is defined as:

S̄ = 1

K

∑
k

Sk (4)

where K is the number of patches on the complete feature response and Sk
shows the local spatial entropy as defined in Equation 3 and depicted in the last
row of Figure 3. Our detector makes the final decision by comparing the average
local spatial entropy from Equation 4 with a selected threshold, i.e., we use this
feature to measure the spatial complexity of an input image (feature response).

5 Experimental Results

To confirm the value of our final metric in Equation 4, we first perform ex-
periments to visually compare the approximated distribution of the averaged
local spatial entropy of feature responses in clean and perturbed images. We use
the validation set of ImageNet [34] with more than 50,000 images from 1,000
classes and again the VGG19 CNN [36]. Perturbations for this experiment are
computed only via the Fast Gradient Sign Attack (FGSM) method for com-
putational reasons. Figure 4a) shows that the clean images are separable from
perturbed examples although there is some overlap between the distributions.

Computing adversarial perturbations using evolutionary and iterative algo-
rithms is demanding regarding time and computational resources. However, we
would like to apply the proposed detector to a wide range of adversarial attacks.
Therefore, we have drawn a number of images from the validation set of Ima-
geNet for each attack and present the detection performance of our method in
Figure 4. The selection of images is done sequentially by class and file name up
to a total number of images per method that could be processed in a reason-
able amount of time (see Table 1). We base our experiments on the FoolBox
benchmarking implementation3, running on a Pascal-based TitanX GPU.
3 https://github.com/bethgelab/foolbox

https://github.com/bethgelab/foolbox
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Adversarial attack #Images Success rate Ground truth Target class False positive rate
(run time [days]) confidence confidence 1% 5% 10%

FGSM [12] 50,014 (3) 0.925 0.022 0.588 0.954 0.974 0.983
Gradient attack [33] 50,014 (15) 0.499 0.052 0.371 0.922 0.954 0.969
One pixel attack [40] 50,014 (32) 0.620 0.037 0.463 0.917 0.951 0.966
DeepFool [28] 47,858 (42) 0.606 0.041 0.446 0.936 0.963 0.976
Boundary attack [3] 4,013 (17) 0.940 0.023 0.583 0.934 0.960 0.972

Table 1: Numerical evaluation of detection performance on the three different
adversarial attacks. Column two gives the amount of tested attacks and elapsed
approx. run time. Success of an adversarial attack is given if a perturbation
changes the prediction. Columns four and five show average confidence values of
the true (ground truth) and wrong (target) class after successful attack, respec-
tively. The last columns show detection rates for different false positive rates.

Method Dataset Network Attack Performance
Recall Precision AUC

Uncertainty density estimation [9] SVHN [17] LeNet [19] FGSM - - 0.890
Adaptive noise reduction [22] ImageNet (4 classes) CaffeNet DeepFool 0.956 0.911 -
Feature squeezing [43] ImageNet-1000 VGG19 Several attacks 0.859 0.917 0.942
Statistical analysis [14] MNIST Self-designed FGSM (ϵ= 0.3) 0.999 0.940 -
Feature response (our approach) ImageNet validation VGG19 Several attacks 0.979 0.920 0.990

Table 2: Performance of similar adversarial attack detection methods. The Area
Under Curve (AUC) is the average value of all attacks in the third and last row.

Figure 4b presents the Receiver Operating Characteristics (ROC) of the pro-
posed detector, and numerical evaluations are provided in Table 1. Our detection
method performs better for gradient-based perturbations compared to the single
pixel attack. Furthermore, Table 1 suggests that the best adversarial attack de-
tection performance is achieved for FGSM and boundary attack perturbations,
where the network confidences are changed the most. This observation suggests
that the proposed detector is more sensitive to attacks which are stronger in fool-
ing the network (i.e., change the ground truth label and target class confidence
more drastically). By using feature responses, we detect more than 91% of the
perturbed samples with a low false positive rate (1%).

In general, it is difficult to directly compare different studies on attack de-
tectors since they use a vast variety of neural network models, datasets, attacks
and experimental setups. We present a short overview of the performances of
current detection approaches in Table 2. Our approach is most similar to the
methods of Liang et al. ([22]) and Xu et al. ([43]). The proposed detector in
this paper outperforms both based on the presented results in their work; how-
ever, we cannot guarantee identical implementations and parameterizations of
the used attacks (e.g., subset of used images, learning rates for optimization
of perturbations). Similarly, adaptive noise reduction in the original publication
[22] is applied to only four classes of the ImageNet dataset and defended a model
based on CaffeNet, which differs from our experimental setup.
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Original Adversarial Original Adversarial

Figure 6: Successful adversarial examples created by DeepFool [28] for binary and
ternary classification tasks are only possible with notable visible perturbations.

6 Discussion and Conclusion

The presented results demonstrate that the reality of adversarial attacks: im-
proving the robustness of CNNs is necessary. However, we conducted further
preliminary experiments on binary (cat versus dog [32]) and ternary (among
three classes of cars [16]) classification tasks as proxies for the kind of few-class
classifications settings frequently arising in practice. They suggest that it is more
challenging to find adversarial examples in such a setting without plenty of “other
classes” to pick from for misclassification. Figure 6 illustrates these results.

In this paper, we have presented an approach to detect adversarial attacks
based on human-interpretable feature response maps. We traced the effect of
adversarial perturbations on the visual focus of the network in original images,
which inspired a simple yet robust approach for automatic detection. This pro-
posed method is based on thresholding the averaged local spatial entropy of the
feature response maps and detects at least 91% of state-of-the-art adversarial at-
tacks with a low false positive rate on the validation set of ImageNet. However,
the results are not directly comparable with methods in the literature because
of the diversity in the experimental setups and implementations of attacks.

Our results verify that feature response are informative to detect specific
cases of failure in deep CNNs. The proposed detector applies to increase the
interpretability of neural network decisions, which is an increasingly important
topic towards robust and reliable AI. Future work, therefore, will concentrate on
developing reliable and interpretable image classification methods for practical
use cases based on our preliminary results for binary and ternary classification.
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