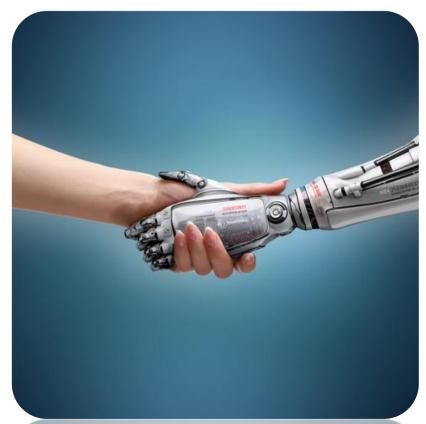
Artificial Intelligence V11: Generative Modeling with Neural Nets

Brief overview of neural networks Generative Adversarial Nets Use case: image inpainting

With material from

- Stuart Russell, UC Berkeley
- Arthur Juliani's and Brandon Amos's blog posts
- Ian Goodfellow, UC Berkeley COMPSCI 294 guest lecture

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm) Zurich University



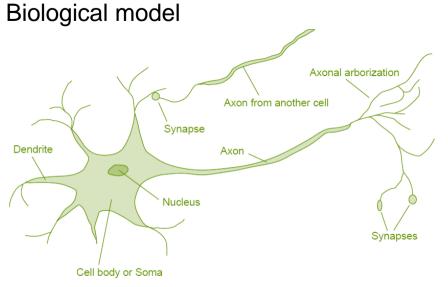
Educational objectives

- Have a basic understanding of the architecture and working of neural networks
- Know the general idea behind Generative Adversarial Nets (GANs)
- Understand the training process (and inherent difficulties) for GANs
- Be able to start working on open source GAN code

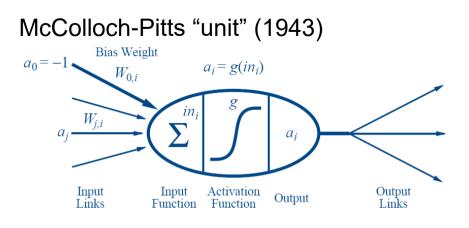
1. BRIEF OVERVIEW OF NEURAL NETWORKS

Neurons

Zurich University



- 10^{11} neurons of > 20 types
- 10¹⁴ synapses
- 1ms 10ms cycle time
- Signals are noisy "spike trains" of electrical potential
- Organized in layers to form a brain



- Output is a **thresholded linear function** of the inputs: $a_i = g(in_i) = g(\sum_j W_{j,i} \cdot a_j)$
- Changing the bias weight $W_{0,i}$ moves the threshold location
- A gross oversimplification of real neurons!
- Purpose: develop understanding of what networks of simple units can do

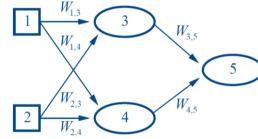
Feed-forward network example

Zurich University of Applied Sciences

FNN: a parameterized family of nonlinear functions

•
$$a_5 = g(W_{3,5} \cdot a_3 + W_{4,5} \cdot a_4)$$

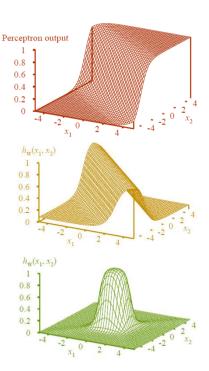
= $g(W_{3,5} \cdot g(W_{1,3} \cdot a_1 + W_{2,3} \cdot a_2) + W_{4,5} \cdot g(W_{1,4} \cdot a_1 + W_{2,4} \cdot a_2))$



Adjusting weights changes the function: learning works this way!
 (→ see appendix for first ideas)

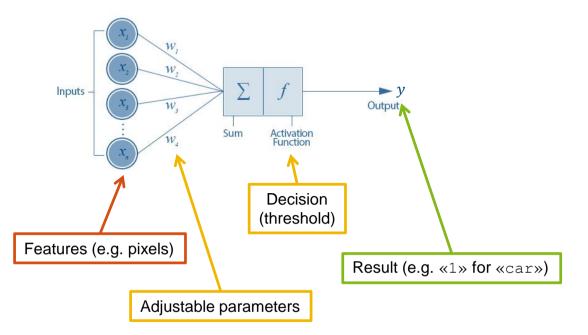
Expressiveness of multilayer networks (multilayer perceptrons)

- All continuous functions w/ 2 layers, all functions w/ 3 layers
 - Combine two opposite-facing threshold functions to make a ridge
 - Combine two perpendicular ridges to make a bump
 - Add bumps of various sizes and locations to fit any surface



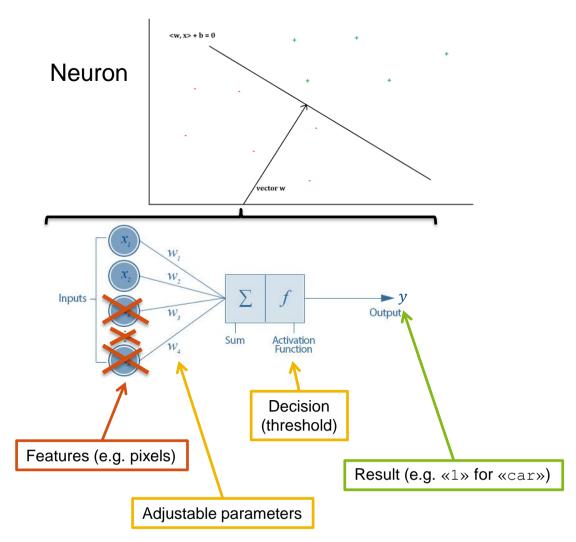
What is the effect of weight adjustment?

Neuron

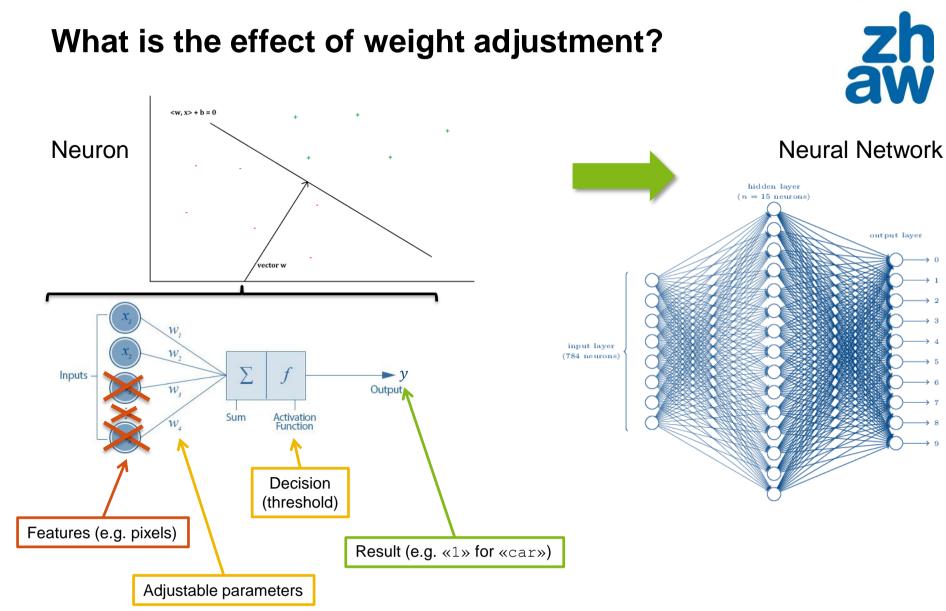


Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

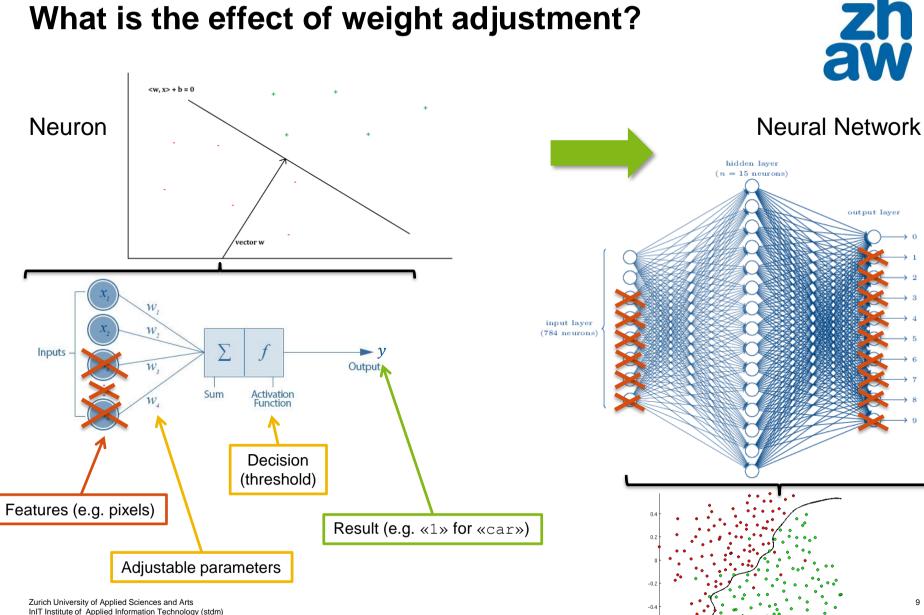
What is the effect of weight adjustment?



Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)



Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)



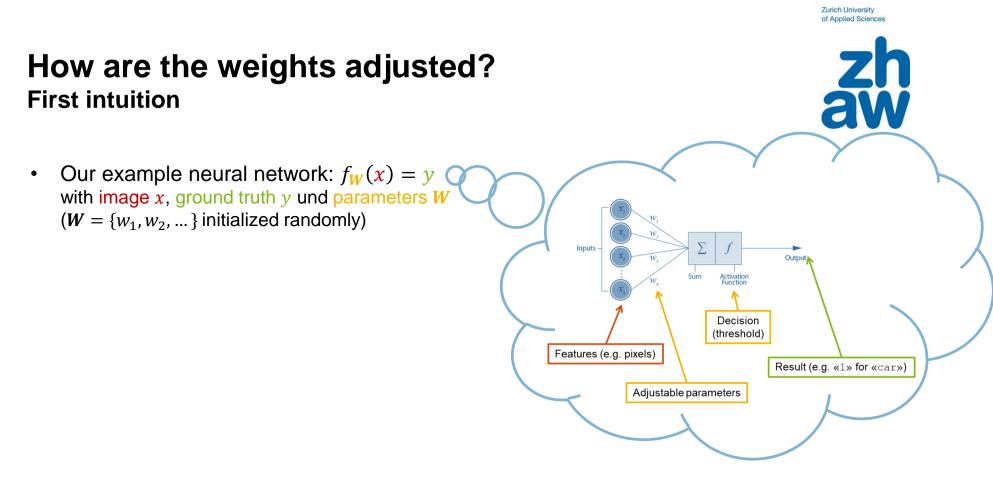
-0.6

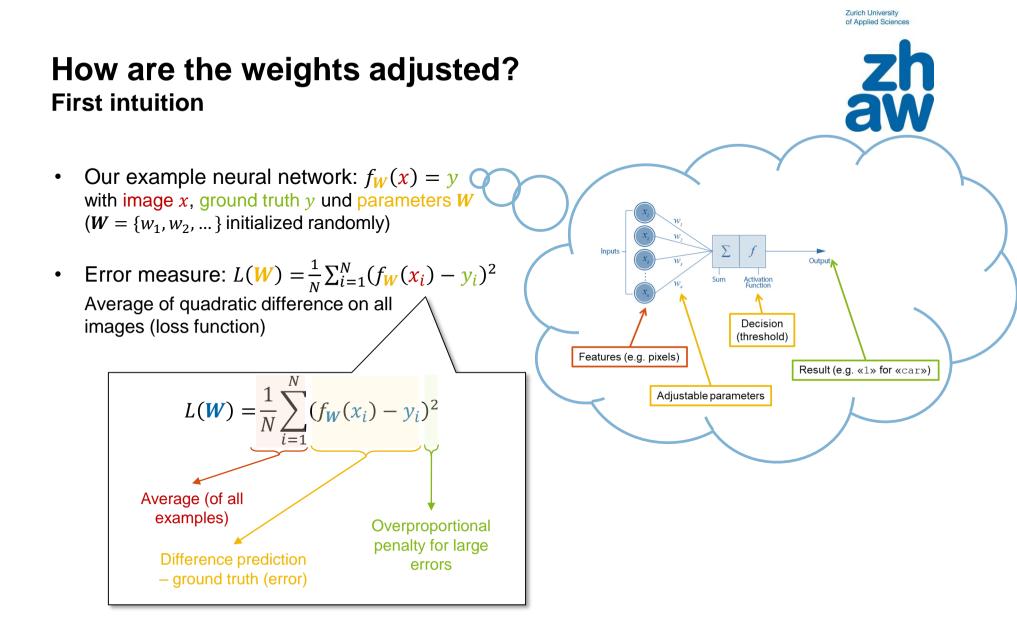
-0.5 -0.4

-0.3 -0.2 -0.1 0.2

Zurich University of Applied Sciences

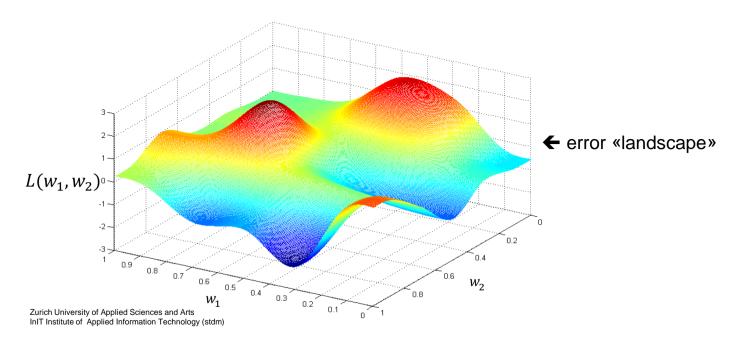
InIT Institute of Applied Information Technology (stdm)





How are the weights adjusted? (contd.) First intuition

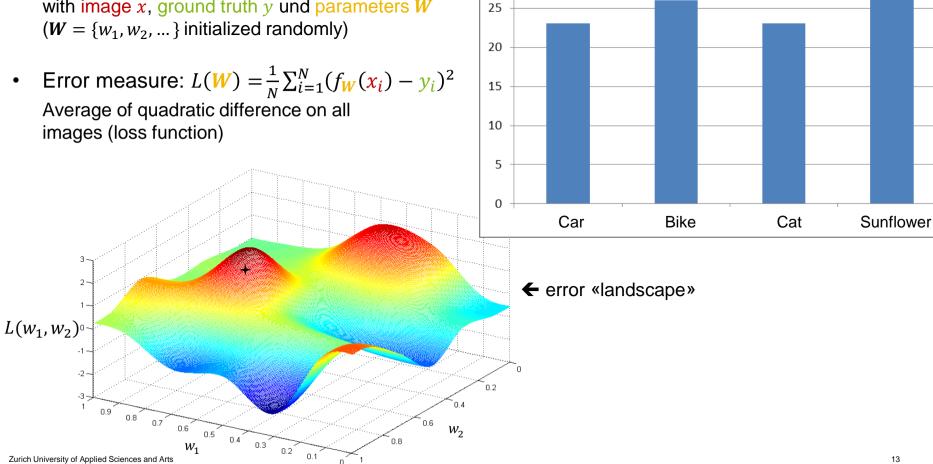
- Our example neural network: f_W(x) = y with image x, ground truth y und parameters W (W = {w₁, w₂, ...} initialized randomly)
- Error measure: $L(W) = \frac{1}{N} \sum_{i=1}^{N} (f_W(x_i) y_i)^2$ Average of quadratic difference on all images (loss function)



How are the weights adjusted? (contd.) **First intuition** Likelihood [%] of certain event

- Our example neural network: $f_W(x) = y$ ٠ with image x, ground truth y und parameters W $(W = \{w_1, w_2, ...\}$ initialized randomly)
- Average of guadratic difference on all images (loss function)

InIT Institute of Applied Information Technology (stdm)



30

How are the weights adjusted? (contd.) **First intuition** Likelihood [%] of certain event

- Our example neural network: $f_W(x) = y$ • with image x, ground truth y und parameters W $(W = \{w_1, w_2, ...\}$ initialized randomly)
- Error measure: $L(W) = \frac{1}{N} \sum_{i=1}^{N} (f_W(x_i) y_i)^2$ • Average of guadratic difference on all images (loss function)

 $L(w_1, w_2)^{\circ}$

-3 -

Zurich University of Applied Sciences and Arts

0.9 0.8

InIT Institute of Applied Information Technology (stdm)

0.7

0.6

 W_1

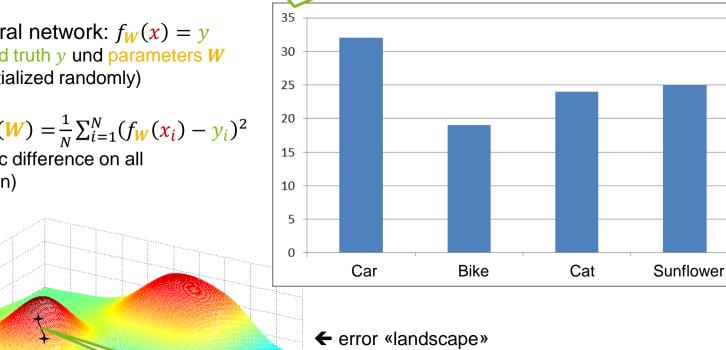
0.5

0.4

0.3

0.2 0.1

П



Method: adapt weights of *f* in the direction

of the steepest descent (downwards) of L

0.4

 W_2

0.6

0.8

How are the weights adjusted? (contd.) **First intuition**

- Our example neural network: $f_W(x) = y$ ٠ with image x, ground truth y und parameters W $(W = \{w_1, w_2, ...\}$ initialized randomly)
- Error measure: $L(W) = \frac{1}{N} \sum_{i=1}^{N} (f_W(x_i) y_i)^2$ • Average of guadratic difference on all images (loss function)

 $L(w_1, w_2)^{\circ}$

-3 -

Zurich University of Applied Sciences and Arts

0.9 0.8

InIT Institute of Applied Information Technology (stdm)

0.7

0.6

 W_1

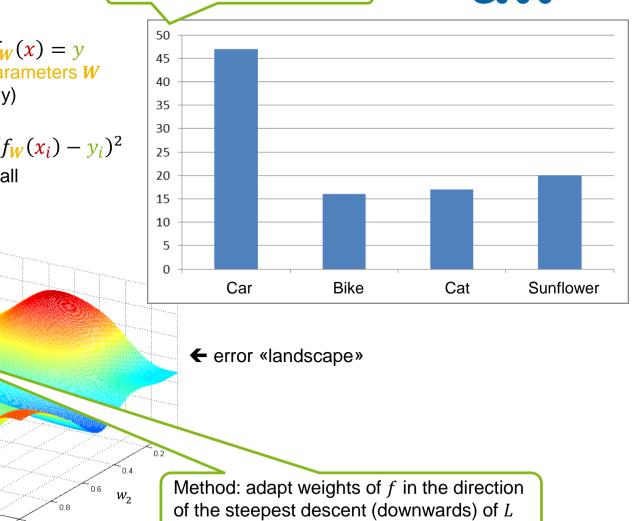
0.5

0.4

0.3

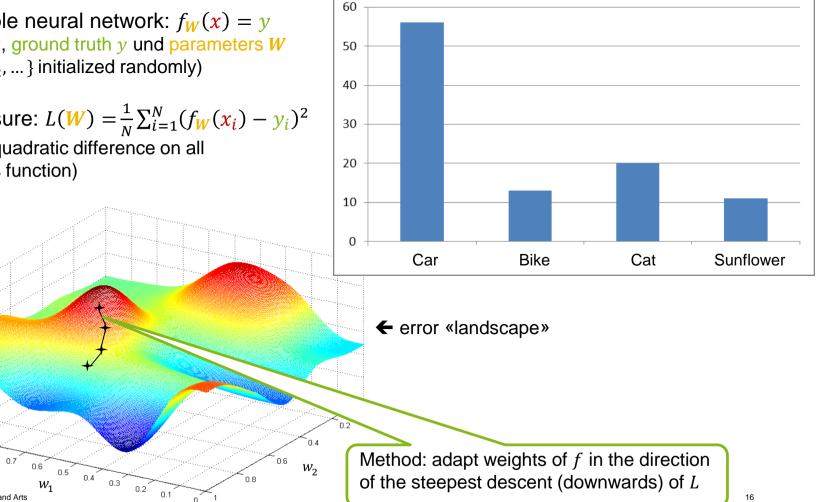
0.2 0.1

П



How are the weights adjusted? (contd.) **First intuition** Likelihood [%] of certain event

- Our example neural network: $f_W(x) = y$ ٠ with image x, ground truth y und parameters W $(W = \{w_1, w_2, ...\}$ initialized randomly)
- Error measure: $L(W) = \frac{1}{N} \sum_{i=1}^{N} (f_W(x_i) y_i)^2$ • Average of guadratic difference on all images (loss function)



Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

0.9 0.8

-3 -

 $L(w_1, w_2)^{\circ}$

How are the weights adjusted? (contd.) First intuition

- Our example neural network: f_W(x) = y with image x, ground truth y und parameters W (W = {w₁, w₂, ...} initialized randomly)
- Error measure: $L(W) = \frac{1}{N} \sum_{i=1}^{N} (f_W(x_i) y_i)^2$ Average of quadratic difference on all images (loss function)

 $L(w_1, w_2)^{\circ}$

-3 -

Zurich University of Applied Sciences and Arts

0.9 0.8

InIT Institute of Applied Information Technology (stdm)

0.7

0.6

 W_1

0.5

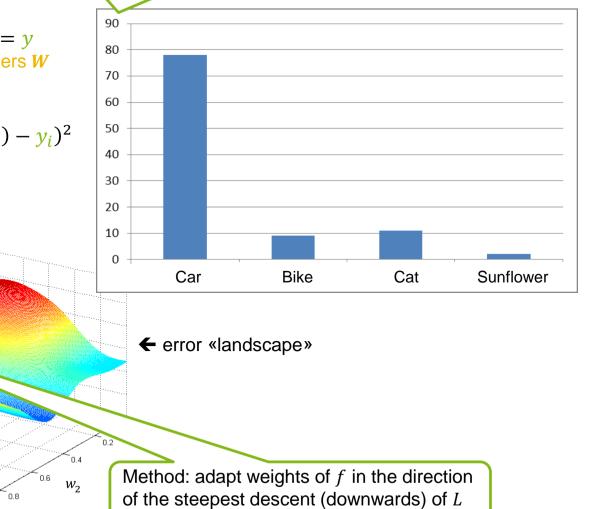
0.4

0.3

0.2 0.1

П

Likelihood [%] of certain event



How are the weights adjusted? (contd.) First intuition

- Our example neural network: f_W(x) = y with image x, ground truth y und parameters W (W = {w₁, w₂, ...} initialized randomly)
- Error measure: $L(W) = \frac{1}{N} \sum_{i=1}^{N} (f_W(x_i) y_i)^2$ Average of quadratic difference on all images (loss function)

 $L(w_1, w_2)^{\circ}$

-3 -

Zurich University of Applied Sciences and Arts

0.9 0.8

InIT Institute of Applied Information Technology (stdm)

0.7

0.6

 W_1

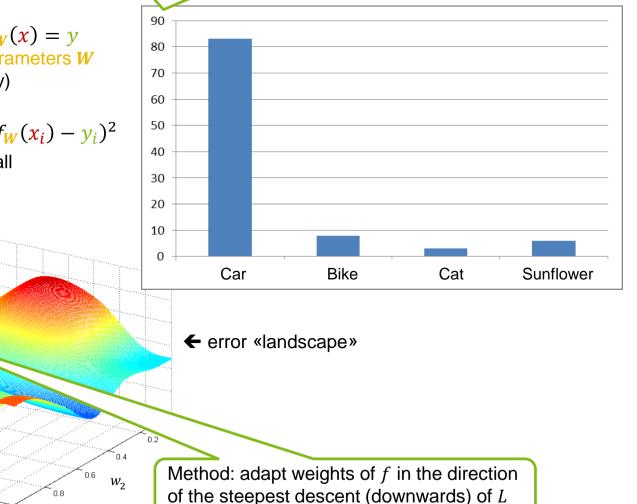
0.5

0.4

0.3

0.2 0.1

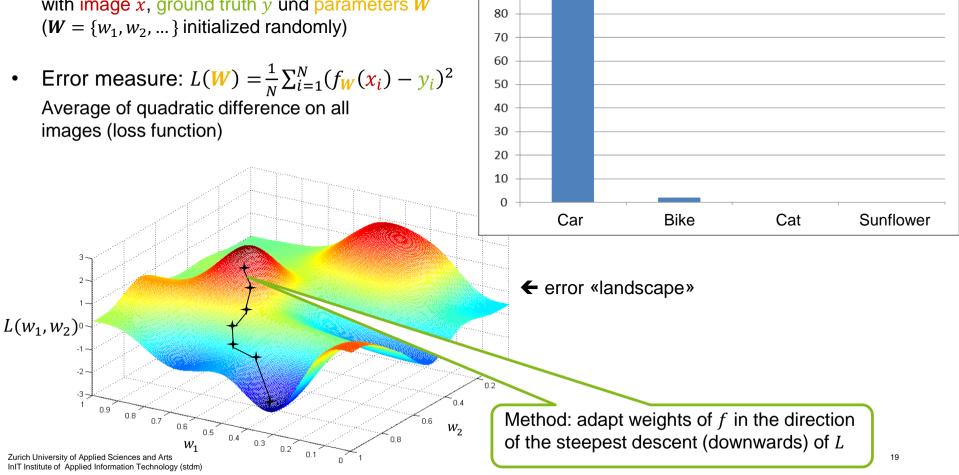
П



How are the weights adjusted? (contd.)

Our example neural network: $f_W(x) = y$ ٠ with image x, ground truth y und parameters W $(W = \{w_1, w_2, ...\}$ initialized randomly)

First intuition Likelihood [%] of certain event



100

90

Neural network training ideas

→ see also https://stdm.github.io/downloads/papers/ADS_2019_DeepLearning.pdf

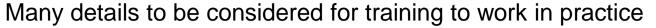
How are the weights adjusted?

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

Trained by gradient descent (complete network is differentiable)

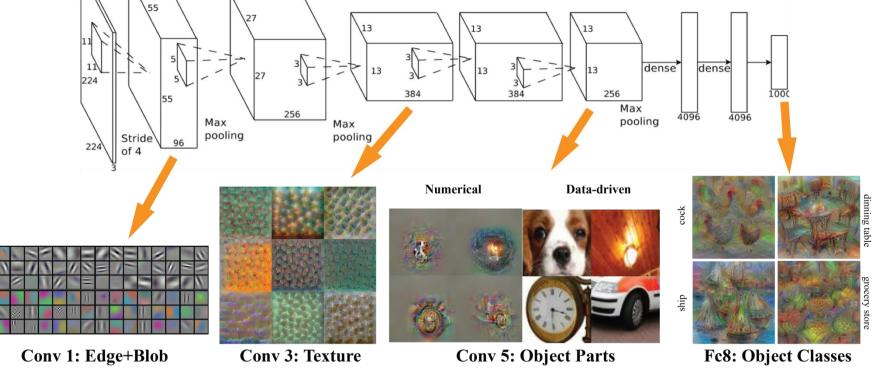
- Forward pass: calculation of loss function *L* for a mini batch of training examples
- Backward pass: calculation of $\frac{\partial L}{\partial W_{l,i}}$ for each weight $W_{l,i}$ on overall loss
 - Efficiently computable by layer-wise application of chain rule (backpropagation algorithm)



- Weight initialization: choose random initial weights according to the magnitude of the inputs
- Gradient flow: secure sufficient gradient magnitude for fast training convergence via batchnorm
- Learning rate: choose adaptive learning rates, e.g. using the ADADELTA optimizer
- Batch composition: care for sufficient randomness in the presentation order
- Regularization: use dropout to overcome the problem of more parameters then input data

Source: http://vision03.csail.mit.edu/cnn art/data/single layer.png

What does a neural network «see»? A hierarchy of progressively complex features, visualized



Convolutional Neural Networks

0[:,:,0]

2 3 3

3 7 3

8 10 -3

0[:.:.1]

-8 -8 -3

-3 1 0

-3 -8 -5

w1[:.:.0]

0 1 -1

0 -1 0

0 -1 1

w1[:,:,1]

-1 0 0

1 -1 0

1 -1 0

w1[:.:.2]

-1 1 -1

0 -1 -1

1 0 0

Bias b1 (1x1x1)

toggle movement

b1[:,:,0]

0

Filter W0 (3x3x3)

w0[:,:,0]

-1 0 1

0 0 1

1 -1 1

w0[:,:,1

-1 0 1

1 -1 1

0 1 0

w0[:...2

111

 1×0

0 -1 0

Bias b θ (1x1x1)

b01:,:,0]

Input Volume (+pad 1) (7x7x3)

0 0 0 0 0 0

2

0 2 0

0 1 0

2 0 0

2

0 0

0 0 0 0

2

0

0 0 0

0000

0

0 0

x[:,:,01

Intuition: cp. <u>https://medium.freecodecamp.org/an-intuitive-guide-to-convolutional-n</u>eural-networks-260c2de0a050

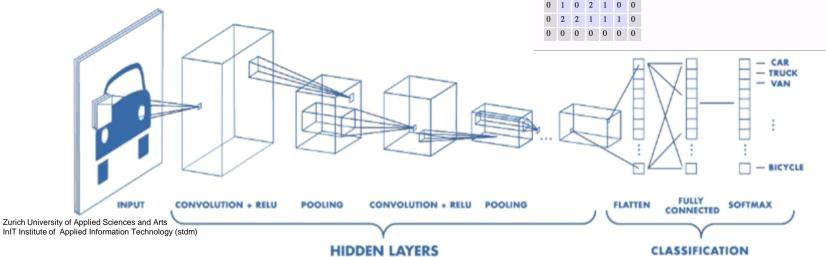
Goal: fewer free parameters \rightarrow eases learning

Idea: exploit 2D-correlated local structure in (image) input data

 \rightarrow inspired by mammal visual cortex

Principle

- A "filter" moves over every input pixel and calculates a feature that describes the pixel's local context
 → map result to same spatial location
 - \rightarrow filter weights (i.e., feature meaning) is trainable
- Have **several such** "filters" to encode different features
- After each filtering layer, **sub-sample** result to reduce spatial resolution and increase "field of vision"



2. GENERATIVE ADVERSARIAL NETS

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

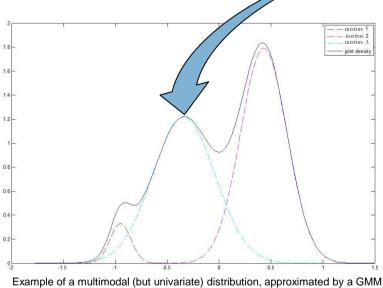
Recap: Probability distributions as generative

models

Terminology: its probability density function (pdf) is one way to describe a distribution.

What does a pdf tell about a set of data?

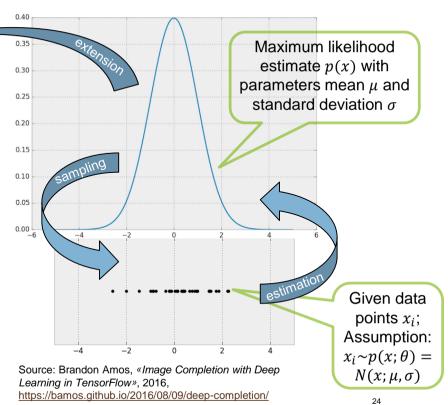
- → For data coming from some stochastic processes, the pdf tells everything there is to know about the data
- → Allows for sampling data from the underlying distribution



with 3 mixtures.

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm) A Gaussian as base generative model

Recovering a known, parametric pdf: The univariate Gaussian



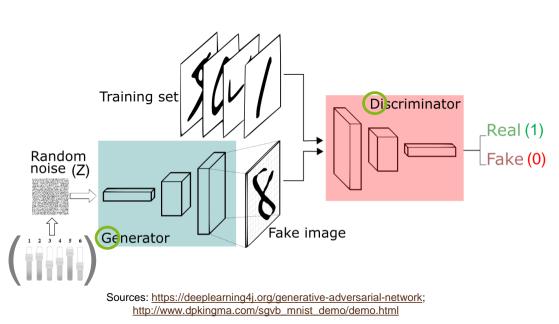
Adversarial nets Bootstrapping implicit generative representations

Train 2 models simultaneously [1]

- G: Generator
 - \rightarrow learns to generate data
- D: Discriminator
 - \rightarrow learns p(x not being generated)

- The latent space Z serves as a source of variation to generate different data points
- ➔ Only D has access to real data

[1] Schmidhuber, «Learning Factorial Codes by Predictability Minimization», 1992



No weenies allowed! How SpongeBob helps..

...to understand bootstrapping untrained (G)enerator & (D)iscriminator

Bouncer newbie (D) decides on entry: for tough guys only

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk

Zurich University of Applied Sciences and Arts

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

No weenies allowed! How SpongeBob helps..

...to understand bootstrapping untrained (G)enerator & (D)iscriminator

Zurich University of Applied Sciences

Bouncer newbie (D) decides on entry: for tough guys only

SpongeBob (G) wants to appear tough to be admitted (i.e., synthesizes behavior)

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk

No weenies allowed! How SpongeBob helps..

SpongeBob (G) wants to

appear tough to be admitted

(i.e., synthesizes behavior)

...to understand bootstrapping untrained (G)enerator & (D)iscriminator

In the beginning, D focuses on obvious things to discriminate: e.g., physical strength

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk

Bouncer newbie (D) decides on entry: for tough guys only

No weenies allowed! How SpongeBob helps..

...to understand bootstrapping untrained (G)enerator & (D)iscriminator

In the beginning, D focuses on obvious things to discriminate: fails e.g., physical strength

So G tries to imitate that, but

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk

on entry: for tough guys only

SpongeBob (G) wants to

appear tough to be admitted

(i.e., synthesizes behavior)

In the beginning, D focuses on

obvious things to discriminate:

e.g., physical strength

SpongeBob (G) wants to appear tough to be admitted (i.e., synthesizes behavior)

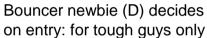
So G tries to imitate that, but fails

No weenies allowed! How SpongeBob helps..

...to understand bootstrapping untrained (G)enerator & (D)iscriminator

By observation, G discovers more detailed features of tough guys: e.g., fighting

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk



No weenies allowed! How SpongeBob helps..

...to understand bootstrapping untrained (G)enerator & (D)iscriminator

Bouncer newbie (D) decides on entry: for tough guys only

SpongeBob (G) wants to appear tough to be admitted (i.e., synthesizes behavior)

obvious things to discriminate: e.g., physical strength

So G tries to imitate that, but fails

By observation, G discovers more detailed features of tough guys: e.g., fighting

So G learns to imitate that as well

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk

Zurich University of Applied Sciences

aw

By observation, G discovers

more detailed features of

No weenies allowed! How SpongeBob helps..

...to understand bootstrapping untrained (G)enerator & (D)iscriminator

Bouncer newbie (D) decides on entry: for tough guys only

SpongeBob (G) wants to appear tough to be admitted (i.e., synthesizes behavior)

So G learns to imitate that as well

In the beginning, D focuses on obvious things to discriminate: fails e.g., physical strength

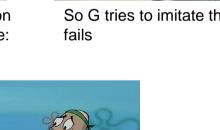
tough guys: e.g., fighting

Source: Arthur Juliani, «Generative Adversarial Networks Explained with a Classic Spongebob Squarepants Episode», 2016, https://medium.com/@awjuliani/generative-adversarial-networks-explained-with-a-classic-spongebob-squarepants-episode-54deab2fce39#.gcoxuaruk

So G tries to imitate that, but

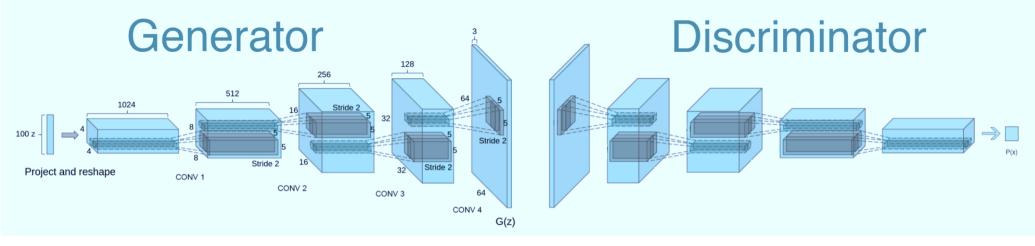
Zurich University of Applied Sciences

...and eventually tricks D.



GAN model formulation (improved) Deep convolutional generative adversarial nets [2]

Zurich University of Applied Sciences



Implement both G and D as deep convnets (DCGAN)

- No pooling, only fractionally-strided convolutions (G) and strided convolutions (D)
- No fully connected hidden layers for deeper architectures
- Apply **batchnorm** in both
- **ReLU** activation in **G** (output layer: tanh)
- LeakyReLU activation in D (all layers)

[2] Radford, Metz, Chintala, «Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks», 2016

Model training [5]

for number of training iterations do

for k steps do

Usually

k = 1(or $\frac{1}{2}$)

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$abla_{ heta_d} rac{1}{m} \sum_{i=1}^m \left[\log D\left(oldsymbol{x}^{(i)}
ight) + \log \left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)
ight].$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)$$

end for

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

Model training [5]

for number of training iterations do

Usually for k steps do

k = 1(or $\frac{1}{2}$)

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

change
$$\theta_D$$
 to maximize $\left\{ \nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right].$

end for

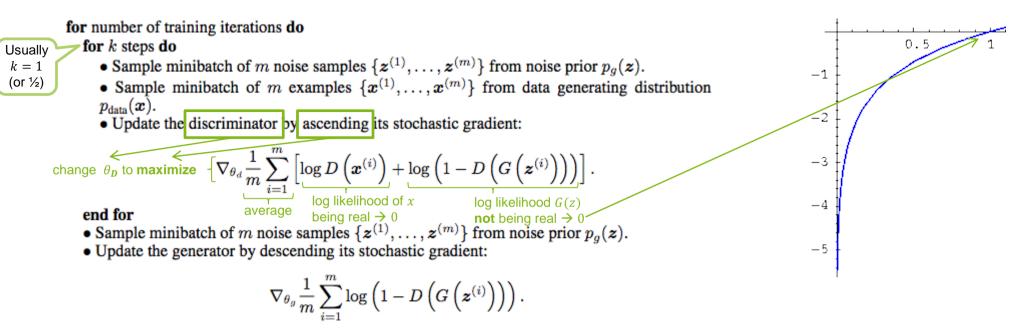
- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$abla_{ heta_g} rac{1}{m} \sum_{i=1}^m \log\left(1 - D\left(G\left(oldsymbol{z}^{(i)}
ight)
ight)
ight)$$

end for

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

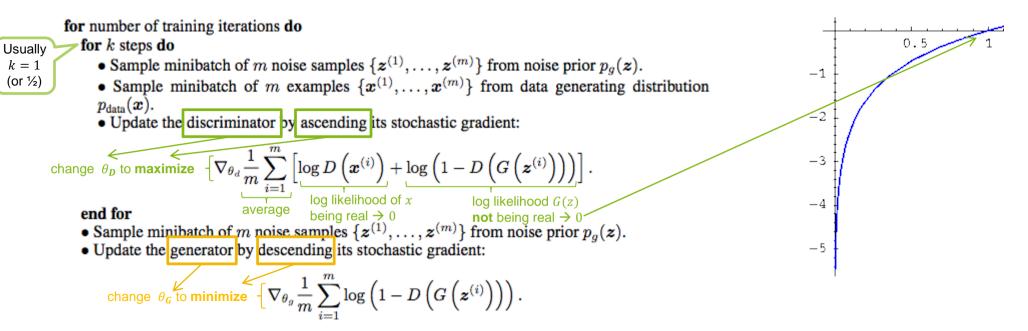
Model training [5]



end for

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

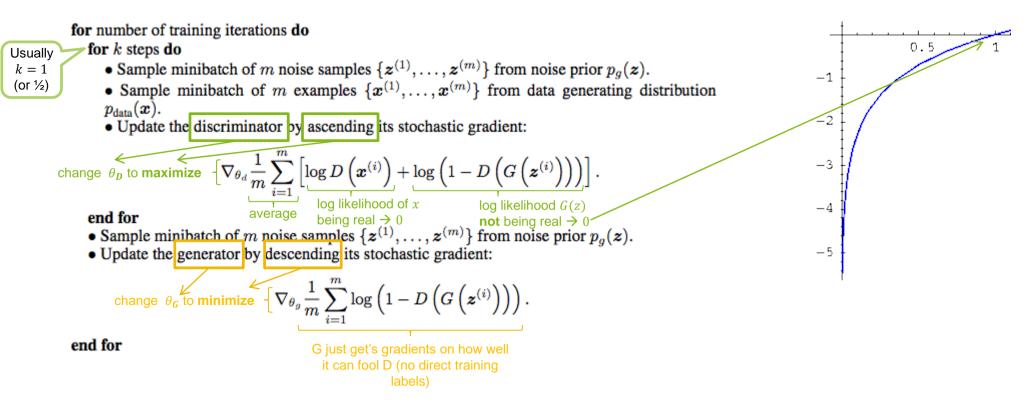
Model training [5]



end for

[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

Model training [5]



[5] Goodfellow, Pouget-Abadie, Mirza, Xu, Warde-Farley, Ozair, Courville, Bengio, «Generative Adversarial Nets», 2014

3. USE CASE: IMAGE INPAINTING

Based on material from Brandon Amos, «Image Completion with Deep Learning in TensorFlow», 2016

https://bamos.github.io/2016/08/09/deep-completion/

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Image inpainting as a sampling problem ...approached by machine learning

Yeh et al., «Semantic Image Inpainting with Perceptual and Contextual Losses», 2016

Training: Regard **images as samples of** some underlying probability distribution p_{G}

1. Learn to represent this distribution using a GAN setup (G and D)

Testing: Draw a suitable sample from p_G by...

- **1.** Fixing parameters Θ_G and Θ_D of G and D, respectively
- **2.** Finding input \hat{z} to G such that $G(\hat{z})$ fits two constraints:
 - a) Contextual: Output has to match the known parts of the image that needs inpainting
 - b) Perceptual: Output has to look generally «real» according to D's judgment
- 3. ... by using gradient-based optimization on \hat{z} .

Zurich University

Reconstruction formulation

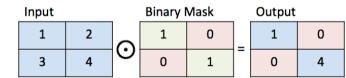
Zurich University of Applied Sciences

Given

- Uncomplete/corrupted image *x*_{corrputed} ٠
- Binary mask *M* (same size as *x_{corrmuted}*, 0 for missing/corrupted pixels) ٠
- Generator network G(), discriminator network D()٠

Problem

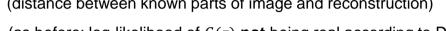
Find \hat{z} such that $x_{reconstructed} = M \odot x_{corrputed} + (1 - M) \odot G(\hat{z})$ ٠ (\odot) is the element-wise product of two matrices) Input



Solution

Define contextual and perceptual loss as follows: ٠

 $L_{contextual}(z) = \|M \odot G(z) - M \odot x_{corrupted}\|_{1}$ (distance between known parts of image and reconstruction) $L_{perceptual}(z) = \log(1 - D(G(z)))$ $L(z) = L_{contextual}(z) + \lambda \cdot L_{percentual}(z)$



(as before: log-likelihood of G(z) **not** being real according to D) (combined loss)

→ Optimize
$$\hat{z} = \arg \min_{z} L(z)$$

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

See it move: https://github.com/bamos/dcgan-completion.tensorflow

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

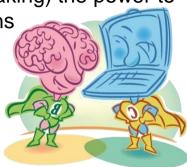
Results

Where's the intelligence?

- Learning smooth approximations of complex probability density functions (PDF) enables us to sample previously unseen examples
 - That is, we can *create* new images, new music, ...

Source: https://nerdist.com/nvidia-ai-headshots-fake-celebrities/.

- But isn't creativity more the power to surprise, i.e., (technically speaking) the power to come up with new yet reasonable PDFs instead of new instantiations from a given PDF?
 - That would mean that to create does not mean to know the PDF of «things», but the PDF of the «reasonableness of things». As this is unknown for novel things, it needs to be continually explored.



Review

- Neural networks with at least one hidden layer are general function approximators, trained by gradient descent
- **GANs** have been shown to **produce realistic output** on a wide range of (still smallish) image, audio and text generation tasks
- Finding Nash equilibria in high-dimensional, continuous, non-convex games is an important open research problem
- Image inpainting works by optimizing the output of a fully trained generator to fit the given context & realism criteria, using again gradient descent
 - → Applying machine learned models might involve optimization (~training) steps again
 - → This is in line with human learning: Once trained to draw, hand-copying a painting involves "optimization" on the part of the painter

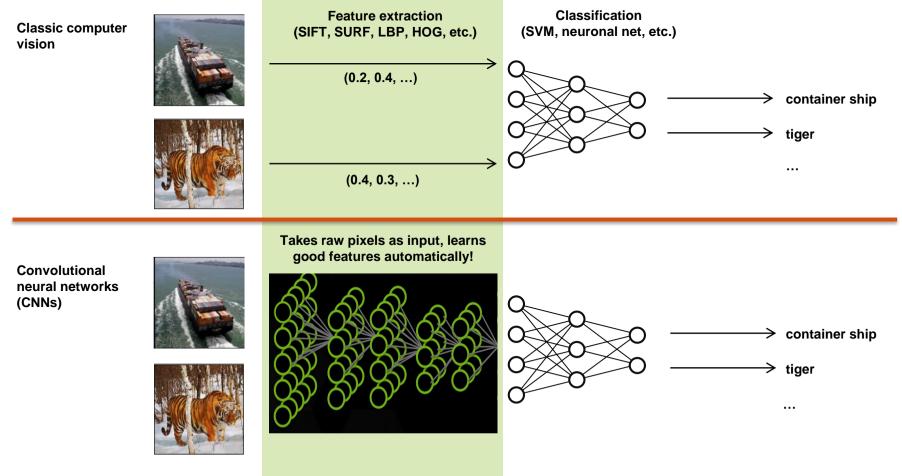
Further reading: Goodfellow, «NIPS 2016 Tutorial: Generative Adversarial Networks», 2016

APPENDIX

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

of Applied Sciences

Recap: basic idea of deep learning Add depth (layers → capability) to learn features automatically



Zurich University

Pros and cons of generative models

Zurich University

Flavors of generative models

- **Statistical** models that directly model the pdf (e.g., GMM, hidden Markov model HMM)
- **Graphical** models with latent variables (e.g., Boltzmann machines RBM/DBM, deep belief networks DBN)
- Autoencoders (e.g. Kingma & Welling, "Autoencoding Variational Bayes", 2013)

Promises

- Help **learning about** high-dimensional, complicated probability **distributions** (even if pdf is not represented explicitly)
- **Simulate** possible futures for planning or simulated RL
- Handle missing data (in particular, semi-supervised learning)
- Some applications actually require **generation** (e.g. sound synthesis, identikit pictures, content reconstruction)

Common drawbacks

- Statistical models suffer severely from the curse of dimensionality
- Approximations needed for intractable probabilistic computations during ML estimation
- Unbacked assumptions (e.g., Gaussianity) and averaging e.g. in VAEs

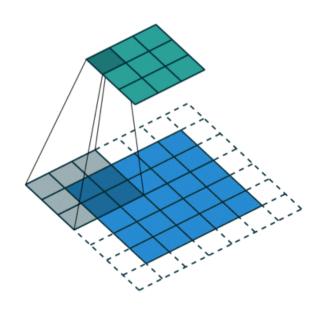
Strided what? Convolutional arithmetic [3] NN wiring to save weights while exploiting local structure

Fractionally-strided conv. in G

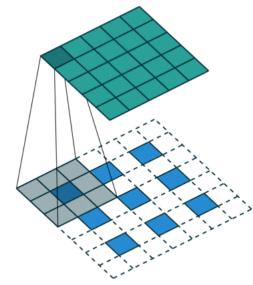
- Performing transposed convolution
- Used to «up-sample» from input (blue) to output (green)

Strided convolutions in D

- Stride (stepsize) = 2
- Used instead of (max) pooling [4]



[3] Dumoulin, Visin, «A guide to convolution arithmetic for deep learning », 2016[4] Springenberg, Dosovitsiy, Brox, Riedmiller, «Striving for simplicity: The all convolutional net», 2014



Zurich University

Visualizing the training process

Observations

- G starts with producing **random noise**
- Quickly arrives at what seems to be pencil strokes
- It takes a while for the network to produce **different images** for different *z*
- It takes nearly to the end before the synthesized images per z stabilize at certain digits



6x6 samples G(z) from fixed z's every 2 mini batches (for 50k iterations). See <u>https://dublin.zhaw.ch/~stdm/?p=400</u>.

→ Possible improvements?

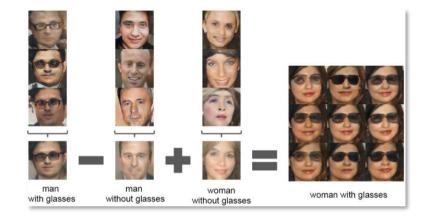
Features of (DC)GANs

Learn semantically meaningful latent space

 Examples of *z*-space vector arithmetic from DCGAN paper [2]:

Training is not guaranteed to converge

- *D* and *G* play a **game-theoretic game** against each other (in terms of slide 12: minimax)
- Gradient descent isn't meant to find the corresponding Nash Equilibria (saddle point of joint loss function, corresponding to minima of both player's costs) [6]



The *z* vectors in the left 3 columns have been averaged, then arithmetic has been performed. The middle image on the right is the output of $G(resulting \ z \ vector)$. The other 8 pictures are the result of adding noise to the resulting *z* vector (showing that smooth transitions in input space result in smooth transitions in output space).

- How to **sync D's and G's training** is experimental (if G is trained too much, it may collapse all of *z*'s variety to a single convincing output)
- The improvements of [2] and [7] make them stable enough for first practical applications
- Research on adversarial training of neural networks is still in its infancy

[6] Goodfellow, Courville, Bengio, «Deep Learning», ch. 20.10.4, 2016

[7] Salimans, Goodfellow, Zaremba, Cheung, «Improved Techniques for Training GANs», 2016

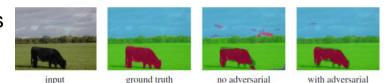
GAN use cases

Research is gaining momentum very quickly; see appendix for more!

Generate images from text ٠ Reed et al., «Generative Adversarial Text to Image Synthesis», 2016

Segment images into semantically meaningful parts ٠ Luc et al., «Semantic Segmentation using Adversarial Networks». 2016

Complete missing parts in images ٠ Yeh et al., «Semantic Image Inpainting with Perceptual and Contextual Losses», 2016 → see next slides



wave.

Zurich University of Applied Sciences

The GAN zoo as of April 2017

Avinash Hindupur's list at https://github.com/hindupuravinash

GAN - Generative Adversarial Networks 3D-GAN - Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling Modeling AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs AdaGAN - AdaGAN: Boosting Generative Models AffGAN - Amortised MAP Inference for Image Super-resolution AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts ALI-Adversarially Learned Inference AMGAN - Generative Adversarial Nets with Labeled Data by Activation Maximization AnGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs b-GAN - b-GAN: Unified Framework of Generative Adversarial Networks Bayesian GAN - Deep and Hierarchical Implicit Models BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks BiGAN - Adversarial Feature Learning BS-GAN - Boundary-Seeking Generative Adversarial Networks CGAN - Conditional Generative Adversarial Nets CGGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks CoGAN - Coupled Generative Adversarial Networks Context-RNN-GAN - Contextual RNN-GANs for Abstract Reasoning Diagram Generation C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks DTN—Unsupervised Cross-Domain Image Generation DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation EBGAN - Energy-based Generative Adversarial Network F-GAN - T-GAN: Training Generative Neural Samplers using Variational Divergence Minimization FF-GAN - Towards Large-Pose Face Frontalization in the Wild GAWWN - Learning What and Where to Draw GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending IAN - Neural Photo Editing with Introspective Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold IcGAN - Invertible Conditional GANs for image editing ID-CGAN - Image De-raining Using a Conditional Generative Adversarial Network Improved GAN - Improved Techniques for Training GANs InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets Adversarial Nets LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks LR-GAN - LR-GAN: Layered Recursive Generative Adversarial Networks for Image Generation

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

LSGAN - Least Squares Generative Adversarial Networks LSGAN - Least Squares Generative Adversarial Networks LS-GAN - Loss-Sensitive Generative Adversarial Networks on Lipschitz Densities MGAN - Precomputed Real-Time Texture Synthesis with Markovian Generative Adversarial Networks MAGAN - MAGAN: Margin Adaptation for Generative Adversarial Networks MAD-GAN - Multi-Agent Diverse Generative Adversarial Networks MalGAN - Generating Adversarial Malware Examples for Black-Box Attacks Based on GAN MARTA-GAN - Deep Unsupervised Representation Learning for Remote Sensing Images McGAN - McGan: Mean and Covariance Feature Matching GAN MedGAN - Generating Multi-label Discrete Electronic Health Records using Generative Adversarial **Networks** MIX+GAN - Generalization and Equilibrium in Generative Adversarial Nets (GANs) MPM-GAN - Message Passing Multi-Agent GANs MV-BiGAN - Multi-view Generative Adversarial Networks pix2pix-Image-to-Image Translation with Conditional Adversarial Networks PPGN-Plug & Play Generative Networks: Conditional Iterative Generation of Images in Latent Space PrGAN - 3D Shape Induction from 2D Views of Multiple Objects RenderGAN - RenderGAN: Generating Realistic Labeled Data RTT-GAN - Recurrent Topic-Transition GAN for Visual Paragraph Generation RTI-GAN - Recurrent Topic-Transition GAN for Visual Paragraph Generative SGAN - Stacked Generative Adversarial Networks SGAN - Texture Synthesis with Spatial Generative Adversarial Networks SAD-GAN - SAD-GAN: Synthetic Autonomous Driving using Generative Adversarial Networks SalGAN - SalGAN: Visual Saliency Prediction with Generative Adversarial Networks SEGAN - SEGAN: Speech Enhancement Generative Adversarial Networks SeGAN - SeGAN: Segmenting and Generating the Invisible SeqGAN - SegGAN: Sequence Generative Adversarial Nets with Policy Gradient SketchGAN - Adversarial Training For Sketch Retrieval Steriori - Autorisaria Training to Generate and modify facial images from attributes Softmax-GAN - <u>Softmax GAN</u> SRGAN - <u>Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network</u> S^2GAN - Generative Image Modeling using Style and Structure Adversarial Networks SSL-GAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks StackGAN - StackGAN: Text to Photo-realistic Image Synthesis with Stacked Generative Adversarial Networks TGAN - Temporal Generative Adversarial Nets TAC-GAN - TAC-GAN - Text Conditioned Auxiliary Classifier Generative Adversarial Network TP-GAN - Beyond Face Rotation: Global and Local Perception GAN for Photorealistic and Identity Preserving Frontal View Synthesis Triple-GAN - Triple Generative Adversarial Nets Unrolled GAN - Unrolled Generative Adversarial Networks VGAN - Generating Videos with Scene Dynamics VGAN - Generative Adversarial Networks as Variational Training of Energy Based Models VAE-GAN - Autoencoding beyond pixels using a learned similarity metric VarGAN - Multi-View Image Generation from a Single-View ViGAN - Image Generation and Editing with Variational Info Generative Adversarial Networks WGAN - Wasserstein GAN

WGAN-GP-Improved Training of Wasserstein GANs WaterGAN - WaterGAN: Unsupervised Generative Network to Enable Real-time Color Correction of Monocular Underwater Images