Artificial Intelligence V10: Probabilistic Learning

Probabilistic modeling Example domain: speech processing Gaussian Mixture Models

Based on material by

- Stuart Russell, UC Berkeley
- T. Stadelmann, R. Ewerth & B. Freisleben, U Marburg

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Educational objectives

- **Remember Bayesian learning**, especially Bayes' theorem and the Bayes classifier
- Grasp how the concept of probability is extremely useful in AI, especially for learning
- Explain how a Gaussian Mixture Model (GMM) is trained and evaluated, given the respective equations and the EM algorithm
- Apply GMMs for pattern recognition tasks on audio data

"In which we view learning as a form of uncertain reasoning from observations."

→ Reading: AIMA, ch. 20 (optional: 13-14)

1. PROBABILISTIC MODELING

Probability distributions and density functions

Terminology: its probability density function (pdf) is one way to describe a distribution.

What does a pdf tell about a set of data?

- Where to expect sampleswith which probability
- Correlation/covariance of dimensions
- ➔ For data coming from some stochastic processes, the pdf tells everything there is to know about the data
- → Allows for sampling data from the underlying distribution (generative modeling)

An example generative model

The univariate Gaussian A parametric pdf, recoverable from data (Gaussianity given)

https://bamos.github.io/2016/08/09/deep-completion/

Bayes' theorem One of the cornerstones of modern data analysis

with (in a machine learning context with training data X and model h)

- p(X|h) the **likelihood** of the data, given the model \rightarrow called the evidence for h
- p(X) the a priori probability of the training data $X \rightarrow$ this normalization factor is rarely needed/used
- p(h) is the **a priori** probability of hypothesis $h \rightarrow$ often neglected in practice due to dominance of evidence

 $p(h|X) = \frac{p(X|h) \cdot p(h)}{p(X)}$

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

- Generally: Convert between prior and posterior probabilities
- Specific example: Model selection
 - → Given competing $h_i \in \mathcal{H}$, one can calculate the likelihood $p(X|h_i)$,

then select best $\hat{h} = \max_{h_i} p(h_i | X) \approx \max_{h_i} p(X | h_i)$

1701-1761

Zurich University

There's a long-standing controversy pro/con Bayesianism in statistics, see e.g. <u>http://lesswrong.com/lw/1to/what_is_bayesianism/;</u> for the meaning of Bayesianism in machine learning, see e.g. <u>https://www.reddit.com/r/MachineLearning/comments/6dbwnf/d_what_is_exactly_a_bayesian_guy_in_machine/</u>

Bayesian reasoning & learning Based on [Mitchell, 1997], ch. 6

Bayesian reasoning

- Built upon Bayes' theorem to convert prior probabilities into posteriors
- Quantities of interest are governed by probability distributions
- **Optimal decisions** are made by taking them plus observed data into account

Pro

- Provides explicit probabilities for hypotheses
- Helps to understand/analyze algorithms that don't emit probabilities (e.g., why to minimize sum of squares; what the inductive bias of decision trees is)
- Everything done probabilistically

(e.g., every training instance contributes to the final hypothesis according to its prior probability; **prior knowledge** can be incorporated as prior probabilities for candidate hypotheses or distributions over training data; predictions can be easily combined)

Con

- Many needed **probabilities** are **unknown** in practice (approximations like sampling needed)
- Direct application of Bayes theorem often computationally intractable

Zurich University

of Applied Sciences

The Bayes optimal classifier Classification's *«gold standard»*

Theoretically **optimal** (=most probable) classification

• Combine predictions of all hypotheses, weighted by their posterior probabilities:

$\underset{y_j \in Y}{\operatorname{argmax}} \sum_{h_i \in \mathcal{H}} p(y_j | h_i, X) p(h_i | X)$

(where y_j is a label from the set *Y* of classes, h_i is a specific hypothesis out of the hypothesis space \mathcal{H} , and $p(h_i|X)$ is the posterior of h_i given the data *X*)

• No other method using the same \mathcal{H} and X can do better on average

The maximum a posteriori (MAP) hypothesis is the one with the largest p(h|X)

Pro

- In particular **outperforms** simply taking the classification of the **MAP hypothesis** Example: Let 3 classifiers predict tomorrows weather as $h_1(x) = sunny$, $h_2(rainy)$, $h_3(rainy)$ with posterior probabilities of .5, .4 and .1, respectively; let the true weather tomorrow be *rainy*. The MAP hypothesis h_1 wrongly predicts *sunny* weather; the Bayes classifier truly predicts *rainy*.
- Enforces the idea of ensemble learning

Con

• Computationally intractable (linear in $|\mathcal{H}| \rightarrow \text{see } \underline{\text{http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf}$)

The EM algorithm

A general-purpose, unsupervised learning algorithm

EM (expectation maximization)

- Iterative method to learn in the presence of unobserved variables → A typical hidden variable is some sort of group/cluster membership
- Good convergence guarantees (finds local maximum) ٠

Example

A given dataset is known to be generated by either of 2 Gaussians (with equal probability)

Source: https://en.wikipedia.org/wiki/Expectation%E2%80%93maximization algorithm)

- Only the data is observed ٠
 - → Which Gaussian generated a certain point is unobserved
 - → The Gaussians' parameters are unknown
- The means & variances of these Gaussians shall be learned •
 - → Needs an estimation of the membership probability of each point to either Gaussian

The EM algorithm (contd.)

Algorithm

1. Start with a random initial hypothesis

Example: **Pretend to know the parameters** μ , σ^2 of the 2 Gaussians (e.g., pick random values)

- 2. E-Step: Estimate expected values of unobserved variables. assuming the current hypothesis holds Example: **Compute probabilities** p_{ti} that feature vector x_t was produced by Gaussian i (i.e., $p_{ti} = p(G = i | x_t) = \frac{p(x_t | G = i)p(G = i)}{p(x_t)} \approx p(x_t | G = i) = g_i(x_t, \mu_i, \sigma_i)$ with g_i being the Gaussian pdf and G the unobserved random variable indicating membership to one of the Gaussians)
- M-Step: Calculate new Maximum Likelihood (ML) estimate of hypothesis, 3. assuming the expected values from (2) hold Example: **Calculate the** μ_i , σ_i^2 , given the currently assigned membership (i.e., using standard ML estimation: $\mu_i = \frac{1}{T} \sum_{t=1}^T p_{ti} \cdot x_t$, $\sigma_i^2 = \frac{1}{T} \sum_{t=1}^T p_{ti} \cdot (x_t - \mu_i)^2$)
- 4. Repeat with step 2 until convergence Always replacing old estimates with new ones

Zurich University of Applied Sciences

M-Step

E-Step

update variables

2. EXAMPLE DOMAIN: SPEECH PROCESSING

The audio signal

The waveform s[n] (a 1D array of N integer samples)

Time domain information (2D: time, amplitude):

- Energy (~loudness): $NRG = \frac{1}{N} \sum_{n} s[n]^2$
- Zero crossing rate (~prominent frequency for monophonic signals): $ZCR = \frac{1}{N} \sum_{n} I(s[n] \cdot s[n-1] < 0)$

Frequency domain information (3D: time, frequency, amplitude):

• Time frequency representations via FFT or DWT (phase information typically discarded)

More on signal processing: Smith, "Digital Signal Processing - A Practical Guide for Engineers and Scientists", 2003

Frame-based processing From signal to features

Feature extraction in general

- Reduction in overall information
- ...while maintaining or even emphasizing the useful information

Challenging audio signal properties

- Neither stationary (i.e., statistical figures change over time)
 > problem with transformations like Fourier transform when analyzed in whole
- ...nor conveys its meaning in single samples
 - → problem when analyzing per sample

Solution

- Chop into short, usually overlapping chunks called frames
 → extract features per frame
- Prominent parameters: 32ms frame-size, 16ms frame-step (i.e., 50% overlap)
 - → Technically a double matrix f[T][D]

with $T = 1 + floor\left(\frac{ceil(N-frameSize)}{frameStep}\right)$ the frame count, D the feature dimensionality

aw

features-audio-processing-video-search-engines/

Mel Frequency Cepstral Coefficients (MFCC) The predominantly used multi-purpose audio feature

MFCC extraction process

- 1. Pre-emphasize: $s[n] = s[n] \alpha \cdot s[n-1]$ (boost high frequencies to improve SNR; α close to 1, e.g. 0.97)
- 2. Compute magnitude spectrum: |FFT(s[n])|(i.e., **time-frequency decomposition** neglecting phase)
- 3. Accumulate under triangular Mel-scaled filter bank (resembles human ear)
- 4. Take DCT of filter bank output, discard all coefficients > M (i.e., low-pass \rightarrow compression; typically $M \in [8..24]$)

Content and meaning of MFCCs

- Low-pass filtered spectrum of a spectrum: "Cepstrum"
- Intuitively: A compact representation of a frame's smoothed spectral shape
 Convey most of the useful information in a speech or music signal, but no pitch information

Source: http://developer.nokia.com & http://phys.unsw.edu.au/~iw

A play with the word "spectrum" and the involved math. operation of convolution

13

Output sound

Filter

(Vocal tract)

Sourc

Vibrating vocal folds

Airstream

Lungs

The source filter model of speech production

Source

C Output spectrum

Frequency (hertz)

B Filter function

Frequency (hertz)

Source spectrum

1.000

2.000

2 000

2 000

Frequency (hertz)

3 000

3.000

3.000

-20

10

- vocal chords
- Produces noise-like (unvoiced) or periodic (overtone-rich, voiced) excitation signal

Filter

Vocal tract shapes the emitted spectrum

Important physiological parameters

- Size of the glottis determines fundamental frequency (F0) range
- Shape of the vocal tract and nasal cavity determines formant frequencies (F1-5), thus "sound"

Different sounds are produced by changing the source/filter configuration

Source-filter interaction: source: http://www.spectrum.uni-bielefeld.de/~thies/HTHS WiSe2005-06/session 05.html

- Air flows from the lungs through the

The vocal tract: source: DUKE Magazine. Vol. 94, No. 3, 05/06 2008

Nasal

pharvnx Cab

malate

Oral pharynx

Epiglottis

Pharuny Ealer

vocal feld

Vocal

Zurich University of Applied Sciences

Macal

Tonor

3. GAUSSIAN MIXTURE MODELS

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Example of a multimodal (but univariate) distribution, approximated by a GMM with 3 mixtures.

Example of a multivariate (2D) Gaussian distribution: samples and contour plot.

Probabilistic mixture models Generative models for unknown, multivariate distributions

Mixture Models

- Approximate an arbitrary distribution by a linear combination of a • simpler, "well-behaved" distribution
 - → Mathematically tractable, compact formulation, allows sampling & inference

The Gaussian Mixture Model (GMM)

- Modeled by a weighted sum of N multivariate **Gaussians** (*N* being sufficiently large)
- Often used because of "nice" mathematical properties ٠ of Gaussian pdf and central limit theorem (~ data from natural phenomena tend to be Gaussian distributed)
- The Gaussians' **parameters** can be estimated efficiently ٠ using the EM algorithm

GMMs as generative models for voice modeling

Reference

• Reynolds, Rose, «Robust Text-Independent Speaker Identification Using Gaussian Mixture Speaker Models», 1995

- Key ideas
- Take the estimated probability density function (pdf) p(x|h) of a speaker's D-dim. training vectors x as a model of his voice
- Model the pdf as a weighted sum of M D-dimensional Gaussians (e.g., M = 32, D = 16)

GMM with 3 mixtures in 1 dimension. Solid line shows **GMM density**, dashed lines show **constituting Gaussian densities**.

0.03 0.02

0.01

0.03

0.01

0.03 0.02 0.01

0.15

GMM rationale

Hybrid solution between non-parametric clusters (vector quantization) and compact smoothing (single Gaussian):

- Smooth approximation of arbitrary densities
- Implicit clustering into broad phonetic classes

(a)

(b)

GMM comparison with other techniques; from [Reynolds and Rose, 1995].

Mathematical formulation of the GMM

Using diagonal covariance (\rightarrow see appendix for reasons)

Notation

- h: model (GMM)
- w: weight (scalar)
- μ : **mean** vector
- σ^2 : **variance** vector (the diagonal of the • covariance matrix Σ)
- q_i : Gaussian pdf of i^{th} (out of M) mixtures
- x: feature vector •
- D: dimensionality of x, μ , σ^2 ٠
- p: density/likelihood of a feature ٠ vector given the model

Formulae

Model consists of: $h = \{w_i, \mu_i, \sigma_i^2\}$ \rightarrow subject to i = 1..M and $\sum_{i=1}^{M} w_i = 1$

Condition on weights to sum up to 1

The multimodal Gaussian with diagonal covariance computes as

independent marginals (dimensions)

$$p(x|h) = \sum_{i=1}^{M} w_i \cdot g_i(x, \mu_i, \Sigma_i)$$

. .

GMM training via the EM algorithm

Maximum likelihood training

- Initialize model $h = \{w_i, \mu_i, \sigma_i^2\}$ using data $X = \{x_1 \dots x_T\}$
 - \rightarrow Instead of pure random initialization, find good start values via clustering (e.g., with k-means)
- E-Step:

• M-Step:

Alternative: Training via maximum a posteriori (MAP) adaptation (i.e. uses a priori knowledge) → see Reynolds, Quatieri, Dunn, «Speaker Verification Using Adapted Gaussian Mixture Models», 2000

$$w_{i} = \frac{1}{T} \sum_{t=1}^{T} p_{ti}(i|x_{t}, h)$$

$$\mu_{i} = \frac{1}{T \cdot w_{i}} \sum_{t=1}^{T} p_{ti}(i|x_{t}, h) \cdot x_{t}$$

$$\sigma_{i}^{2} = \left(\frac{1}{T \cdot w_{i}} \sum_{t=1}^{T} p_{ti}(i|x_{t}, h) \cdot x_{t}^{2}\right) - \mu_{i}^{2}$$

 $p_{ti}(i|x_t,h) = \frac{w_i \cdot g_i(x_t,\mu_i,I_D \cdot {\sigma_i}^2)}{\sum_{i=1}^{M} w_i \cdot g_i(x_t,\mu_i,I_D \cdot {\sigma_i}^2)}$ The (properly normalized) probability of x_t being issued by mixture *i*

Mixture *i*'s weight is just the mean probability of all training vectors being assigned to it

 \rightarrow see appendix

The task of speaker recognition

• Diarization (a.k.a. tracking, clustering): Segment an audio-stream by voice identity (who spoke when, no prior knowledge of any kind)

Doing speaker identification

Finding the speaker *s* of a new utterance, given a set of trained speaker models

- Utterance represented by its feature vector sequence $X = \{x_1 . . x_T\}$
- Speakers models given by { $h_1 .. h_s$ }

Model comparison via generalized likelihood ration (GLR)

- Absolute likelihood values are not meaningful, but their ratios are
 - → To decide if given models h_1 , h_2 trained on utterances X_1 , X_2 are actually of the same speaker, threshold GLR **distance measure**:

$$GLR(h_1, h_2) = \log\left(\frac{p(X_1|h_1) \cdot p(X_2|h_2)}{p(X_1 \cup X_2|h_{1\cup 2})}\right)$$

What GMMs do not capture

Re-synthesizing speech from intermediate stages of the speaker modeling pipeline

- Original utterance -
- Resynthesized feature vectors (MFCCs)
- Resynthesized MFCCs from GMM

Implication

• Temporal context isn't modeled by GMMs

More on temporal context modeling:

- Friedland, Vinyals, Huang, Müller, «Prosodic and other Long-Term Features for Speaker Diarization», 2009
- Stadelmann, Freisleben, «Unfolding Speaker Clustering Potential – A Biomimetic Approach», 2009
- Lukic, Vogt, Dürr, Stadelmann, «Speaker Identification and Clustering using Convolutional Neural Networks», 2016

Where's the intelligence?

• Using **probability** theory and statistics to make an agent work in a world of uncertain events **is a very good idea**

→ But: As we already saw with logic, full implementation without heuristics is computationally intractable

- Particularly in speech processing, **simplifying assumptions** like independence among subsequent feature vectors are **utterly unrealistic**
 - → Results of respective systems are clearly worse than human performance
 - → But: We have been able to work around this using deep feature learning [Lukic et al., 2016]

Review

- Understanding uncertain events as random variables gives us a potent arsenal of tools for modeling: E.g., probability density function (pdf) of a random variable tells us everything there is to know about this function
- Thus, estimating the pdf is a rewarding target for (unsupervised) learning
- **Bayes' theorem** is used to turn priors (i.e., prior knowledge) into posteriors (i.e., taking all evidence & priors into account)
- Speaker recognition comes in the flavors of verification, identification or diarization
- The classic approach is **MFCC** features and **GMM** models
- Optimal parameters are best found using **best practices** (→ see appendix)
- EM training iterates between estimating updates values of hidden variables (based on assumed parameters of the sought distribution E-step), and updating these parameters (based on these new estimates M-step)

Zurich University

APPENDIX

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Other forms of Bayesian learning The Naïve Bayes classifier

Basic idea

- The straightforward way of applying Bayes' theorem to yield a MAP hypothesis is intractable (too many conditional probability terms need to be estimated)
- **Simplification**: Assume **conditional independence** among features given target value $h(x_i) = \underset{y_j \in Y}{\operatorname{argmax}} P(y_j | x_{i1}, x_{i2}, \dots, x_{iD}) = \underset{y_j \in Y}{\operatorname{argmax}} P(x_{i1}, x_{i2}, \dots, x_{iD} | y_j) \cdot P(y_j) = \underset{y_j \in Y}{\operatorname{argmax}} P(y_j) \cdot \prod_{d=1..D} P(x_{id} | y_j)$
- → Very successful in text classification (e.g., SPAM filtering, news classification)

Example (from https://alexn.org/blog/2012/02/09/howto-build-naive-bayes-classifier.html)

- Imagine 74 emails: 30 are SPAM; 51 contain "penis" (of which 20 are SPAM); 25 contain "Viagra" (24 are SPAM)
- Bayes classifier: $p(SPAM|\text{penis, viagra}) = \frac{p(penis|SPAM) \cdot p(viagra) \cdot p(viagra|SPAM) \cdot p(SPAM)}{p(penis|viagra) \cdot p(viagra)} = \cdots$ \Rightarrow intractable with more words because of **cond. prob. terms** also get numerically small
- Naïve Bayes classifier: $p(SPAM|\text{penis}, \text{viagra}) = \frac{p(penis|SPAM) \cdot p(viagra|SPAM) \cdot p(SPAM)}{p(penis) \cdot p(viagra)} = \frac{\frac{20}{30} \cdot \frac{24}{70} \cdot \frac{30}{74}}{\frac{51}{74} \cdot \frac{25}{74}} = 0.928$

Zurich University

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Other forms of Bayesian learning (contd.) The Bayes net (or Bayesian belief network)

- Loosens naïve Bayes constraint: Assumes only conditional independence among certain sets of features
- Model of joint probability distribution of features (also unobserved ones):

 a directed acyclic graph for independence assumptions and local conditional probabilities
- Inference possible for any feature / target, based on any set of observed variables
 → has to be done approximately to be tractable (NP-hard)
- Use case: conveniently encode prior causal knowledge in form of conditional (in)dependencies

Example (from Goodman and Tenenbaum, "Probabilistic Models of Cognition", http://probmods.org)

- A simple Bayes net for medical diagnosis
- One node per random variable
 - ➔ Attached is a conditional probability table with the distribution of that node's values given its parents
- A Link between 2 nodes if there is a direct conditional (causal) dependence

Zurich University

More on Bayesian learning

- <u>http://fastml.com/bayesian-machine-learning/</u>: Brief overview, explanations and references
- [Mitchell, 1997], ch. 6: Concise introduction to Bayesian learning
- <u>http://www.cs.cmu.edu/~tom/mlbook/NBayesLogReg.pdf</u>: New chapter for [Mitchell, 1997]
- [Murphy, 2012] and [Bishop, 2006]: Two text books embracing the Bayesian perspective
- Reynolds, Rose, «Robust Text-Independent Speaker Identification using Gaussian Mixture Speaker Models», 1995

k-means clustering in a nutshell Source: https://en.wikipedia.org/wiki/K-means_clustering

Zurich University of Applied Sciences

The standard algorithm: non-probabilistic EM

1. k initial "means" (in this case k = 3) are randomly generated within the data domain (shown in color).

2. *k* clusters are created by associating every observation with the nearest mean. The partitions here represent the Voronoi diagram generated by the means.

3. The centroid of each of the k clusters becomes the new mean.

4. Steps 2 and 3 are repeated until convergence has been reached.

Properties

• Problems: Very sensitive to choice of k; even with correct k it may converge to wrong local minimum

• Variants: *k*-medoids (centroid to be member of data set), *k*-maxoids (for extremes rather than means)

Glossary of abbreviations

FFT – fast Fourier transform

• Standard algorithm to transform a time-domain (time-amplitude) signal into the frequency domain (frequency-amplitude)

DWT - discrete wavelet transform

• Another transformation to the frequency domain, with higher resolution for higher frequencies

DFT – discrete Fourier transform

• The theoretical basis for the FFT algorithm on an array of samples

SNR - signal to noise ratio

• Amplitude of actual signal (what I want to hear) divided by amplitude of any noise (e.g., background music)

DCT - discrete cosine transform

• As DWT, but decomposes the signal solely based on cosine terms (DFT: sine & cosine)

Mel – from the word "melody"

• Unit to measure the pitch of a sound on a scale where an increase in Mel corresponds to the same increase in perceived pitch

SVM - support vector machine

• An often very well-performing supervised machine learning method: give it data (in form of independent feature vectors) of two classes and it learns the discriminative boundary between them

Glossary of abbreviations (contd.)

ATC – audio type classification

BIC – Bayesian information criterion

- Single-value measure to automatically trade-off model complexity and recognition performance
- µ mean vector
- As estimated on a set of vectors
- Σ covariance matrix
- As estimated on a set of vectors; μ and Σ together determine the multivariate Gaussian distribution
- δ delta coefficients vector
- First temporal derivative of some feature, e.g., a MFCC coefficient: $\delta_{d_t} = MFCC_{d_t} MFCC_{d_{t-1}}$
- $\delta\delta$ delta delta coefficients vector
- Second temporal derivative, i.e. $\delta \delta_{d_t} = \delta_{d_t} \delta_{d_{t-1}}$ for the dth dimension and tth time step
- AANN Auto-associative neural network (a.k.a. autoencoder)
- Supervised machine learning method that learns to reproduce its input on the output through a sort of bottleneck (e.g., compression) layer

Zurich University

dB – Dezibel Logarithmic unit to express the ratio of t

LPC – linear predictive coding

- Logarithmic unit to express the ratio of two physical quantities, e.g. power or intensity with reference to a "zero" level; a Dezibel is a tenth of a Bel. [after Wikipedia]
- mp3 MPEG-1 or MPEG-2, Audio Layer III

Glossary of abbreviations (contd.)

 Lossy audio compression relying heavily on results of psychoacoustics (e.g., masking effects): what can't be heard doesn't need to be coded

ASR - automatic speech recognition

• Joint name for all technologies used to analyze and comprehend human speech with machines VQ - vector quantization

Representing a value of a time series as a linear combination of the last few samples

• A method to represent a set of vectors by a few «representative» vectors (called the «codebook»)

Zurich University

Properties of audio signals Their content and segmentation

The sample array s[n] is just 1D

But: Sound still carries information on many different layers or "dimensions"

- Silence ⇔ non-silence
- Speech ⇔ music ⇔ noise
- Voiced speech ⇔ unvoiced speech
- Different musical genres, speakers, dialects, linguistic units, polyphony, emotions, . . .

Definition of audio segmentation

• Temporally separate one ore more of the above types from each other into consecutive segments by more or less specialized algorithms

Properties of the speech signal

Slowly time-varying

• stationary over sufficiently short period (5-100ms, phoneme)

Speech range: 100 - 6800Hz (telephone: 300 - 3400Hz)

• 8kHz sample rate sufficient, 16kHz optimal

Speech frames convey multiple information:

- Linguistic (phonemes, syllables, words, sentences, phrases, ...)
- Identity
- Gender
- Dialect
- ...
- ➔ fractal structure

Properties of the human auditory system

High dynamic range (120*dB*, $q_{dB} = 10 \cdot \log_{10} \left(\frac{q}{q_{ref}} \right)$ for some quantity *q*)

• Work in the log domain (increase in $3dB \rightarrow$ loudness doubled)

Performs short-time spectral analysis with log-frequency resolution

Similar to wavelet-/Fourier-transform → Mel filter bank

Masking effects

• That's what makes mp3 successful in compressing audio

Channel decomposition via "auditory object recognition"

- That's what a machine can not do (except Melodyne, and nobody knows why)
- ...and lots of further interesting material
- But no direct/simple applicability to ASR at the moment

→ More on the auditory system: Moore, "An Introduction to the Psychology of Hearing", 2004

More speech features Directly from source-filter decomposition

Represent source characteristics via pitch & noise

• 1 double per frame

Represent filter characteristics with filter coefficients a_k from LPC analysis

- 8-10 double per frame
- $s[n] = \sum_{k=1}^{p} a[k] \cdot s[n-k] + e[n]$ (e[n] being the residual)
- Btw.: This is the way it is done in mobile phones

LPC coefficients are also applied as speaker specific features

- Sometimes after further processing
- But typically, MFCCs are used

Source: Keller, "The Analysis of Voice Quality in Speech Processing", 2004

GMM best practices

- Use log-likelihoods instead of likelihoods
 - → Likelihoods become so small that one ends up with numerical instabilities otherwise
- Use a diagonal covariance matrix
 Simpler/faster training, same/better results due to more compact model (with more mixtures)
- Use a variance limit and beware of curse of dimensionality
 → Prohibit artifacts through underestimation of components
- Use 16-32 mixtures and a minimum of 30s of speech (ML)
- Adapt only means from 512-1024 mixtures per gender (MAP)
 - Score only with top-scoring mixtures
- Find optimal number of mixtures for data via brute force and BIC
- Compare models via
 - **Score-wise** (more precise): Generalized Likelihood Ratio (GLR)
 - **Parameter-wise** (faster): Earth Mover's Distance (EMD) or this paper: Beigi, Maes, Sorensen, *«A distance measure between collections of distributions and its application to speaker recognition»*, 1998