Artificial Intelligence V09: Ensemble Learning

Ensembles of classifiers Boosting A pattern recognition example

AND THE DURING STATES

Based on material by

- Jin Tian, Iowa State University
- Cheng Li, Northeastern University
- Jason Brownlee, Machine Learning Mastery
- Yu Wen, Tatung University

Educational objectives

- Remember the AdaBoost algorithm and its distinction from Bagging
- Explain how Boosting can be seen as a form of gradient descent and what benefit this viewpoint has
- Use current implementations of decision tree ensembles (e.g., Random Forest®, XGBoost) for machine learning tasks

"In which we see that combining many weak agents can result in a very strong one."

→ Reading: AIMA, ch. 18.10-18.12

Zurich University of Applied Sciences

1. ENSEMBLES OF CLASSIFIERS

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Ensembles Combining many weak agents to form a strong one

Ensembles in a nutshell

- Goal: Combining multiple complementary classifiers to increase performance
- Idea: Build different "experts", and let them vote

Pros & cons

- ✓ Very effective in practice
- ✓ Good theoretical guarantees
- Easy to implement, not too much parameter tuning
- The result is not so transparent (black box)
- Not a compact representation

Formal problem description

• Given *T* binary classification hypotheses $(h_1, ..., h_T)$, find a combined classifier with better performance of the form

same or different \mathcal{H}

Why do they work? Three fundamental reasons why ensembles *may* be beneficial

We cannot know the best → so we average

Statistical

- Given finite amount of data, many hypothesis typically appear equally good
- Averaging may be a better approximation to the true f

We may not find the best \rightarrow so we average

Computational[®]

- Search for h is heuristic due to interesting \mathcal{H} 's being huge/infinite
- Strategy to avoid local minima: repeat with random restarts, construct an ensemble

We cannot find the best -> so we average

- Representational
- The desired target function may not be realizable using individual classifiers from ${\cal H}$
- It may be approximated by ensemble averaging

Zurich University

Statistical

Computational

•h1

Example: Bagging Majority vote over bootstrapped training data

Bootstrap Aggregating [Breiman, 1996]

- Idea: Design the ensemble to be as diverse as possible
 Assert that this ensures complementary learners
- Almost always **improves** results if base learner is **unstable** (i.e., classification changes with slightly different training data)

Algorithm

The process is remarkably simple (also to implement)

• Usually, the more ensemble members, the better

Statistical reasoning: "If the [training data] is a good approximation of the population, the bootstrap method will provide a good **approximation of** the sampling distribution [~variability of a statistic in different samples from population]". → see R. Vitillo, <u>https://robertovitillo.com/2015/03/</u>, 2015

Random Forest®

A brief description

Build a majority-voting ensemble of decision trees; for each tree,

- Choose a stratified training set of n out of N instances by sampling with replacement
- At every level,
 - choose a random feature set (with replacement) of m out the p attributes
 - choose the best split among those attributes
- No pruning of the branches takes place

Advantages

- Fast training, parallelizable application
- High independence of base classifiers → nearly no overfitting
- Few hyper parameters
- Applicable to large quantities of N, p and #classes
- → Very good out-of-the-box method

Further reading

• [Breiman 2001]: «Random Forests». Machine Learning 45 (1), 5-32

2. BOOSTING

Foundations of boosting

General idea

- **Boost** the performance of weak learners (error slightly >chance)
- Make currently misclassified examples more important, then combine hypotheses
 Each stage (additively) corrects shortcomings of previous stage by reweighting, then majority vote
- Origins in computer science: [Kearns & Valiant, 1988] (as opposed to Bagging: statistics)

Adaptive Boosting algorithm [Freund & Schapire, 1997]

Weak learner: decision stump (=decision tree of height 1; but generalizable to others)
 Important: weak learners have skill but remain weak (to not lose the ensemble effect)

AdaBoost in practice

Based on Seni & Elder, «From Trees to Forests and Rule Sets – A Unified Overview of Ensemble Methods», KDD 2007

- ✓ Still learns when others overfit → margin optimization
- × Sensitive to noise and outliers

Zurich University of Applied Sciences

aw

From AdaBoost to gradient boosting

Zurich University

Recall: In AdaBoost, "shortcomings" are identified by high-weight data points

A brief history of modern boosting (selective, shortened)

- 1. Invention: AdaBoost, the first successful boosting algorithm [Freund et al., 1996], [Freund & Schapire, 1997]
- 2. Translation: Formulation as gradient descent with special loss function (→ compare V04) [Breiman et al., 1998], [Breiman, 1999]
- 3. Generalization: Gradient boosting in order to handle a variety of loss functions [Friedman et al., 2000], [Friedman, 2001]
- ➔ For a great example of cross-disciplinary fertilization, see Breiman, "Arcing classifiers (with discussion and a rejoinder by the author)", 1998

In gradient boosting, "shortcomings" are identified by gradients

• Gradients of what? Why? → see next slides

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Intuition for gradient boosting

Setup

- For ease of discussion we change the setting from (binary) classification to regression (i.e., real-valued labels)
- Results are again applicable to classification (but not intuitively as straight-forward)

Let's play a game

- You are given data $\{(x_1, y_1), ..., (x_N, y_N)\}$ and the task to fit model $\hat{h}(x)$ → minimize squared loss $\ell(y, h(x)) = \frac{1}{2}(y - h(x))^2$
- Suppose a friend helps by giving you an **initial model** F(x) (a regression tree) \rightarrow You check his model and find the model is good but not perfect (e.g. $F(x_1) = 0.8$ while $y_1 = 0.9$)
- Rule: F(x) must **not be changed** in any way, but another model might be added \rightarrow i.e. $\hat{h}(x) = F(x) + h(x)$
- How to train h(x)?

Zurich University of Applied Sciences

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

 \Rightarrow $y_i - F(x_i) = -\frac{\partial L}{\partial F(x_i)}$

٠

with:

dient descent on its parameters is ivalent -> doing many iterations of dient descent is equivalent to many rounds of boosting as well.

13

Intuition for gradient boosting (contd.)

Simple ensemble solution

- The $y_i F(x_i)$'s are called residuals
 - \rightarrow These are the parts that the initial model *F* cannot do well
 - \rightarrow The role of h is to compensate the shortcomings of F
- If the new model F + h is still not satisfactory, we can add another regression tree... ٠

How is this related to gradient descent?

Gradient Descent in general: minimize a function J by moving into opposite direction of gradient

$$\theta_i^{new} = \theta_i^{old} - \alpha \frac{\partial J}{\partial \theta_i^{old}}$$

assuming mean squared error loss. the standard for regression

Earlier: wanted to minimize loss function $L = \sum_{i=1}^{N} \ell(y_i, F(x_i)) = \sum_{i=1}^{N} \frac{1}{2} (y_i - F(x_i))^2$ ٠ \rightarrow $F(x_i)$ is the parameter of L, so we take derivatives w.r.t. $F(x_i)$:

$$\frac{\partial L}{\partial F(x_i)} = \frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)} = F(x_i) - y_i$$

That is: We can interpret residuals for h(x) as negative gradients for improving $F(x_i)$

compare
$$F^{new}(x_i) = F^{old}(x_i) + h(x_i)$$

 $= F^{old}(x_i) + y_i - F^{old}(x_i)$
 $= F^{old}(x_i) - 1 \cdot \frac{\partial L}{\partial F^{old}(x_i)}$
with: $\theta_i^{new} = \theta_i^{old} - \alpha \frac{\partial J}{\partial \theta_i^{old}}$

Gradient boosting of regression trees (Multiclass classification \rightarrow see appendix)

Algorithm

• Gradient boosting for regression

Start with an initial model, e.g. $F = \frac{\sum_{i=1}^{N} y_i}{N}$ (always predict mean value) **repeat** until convergence $-g(x_i) = -\frac{\partial \ell(y_i, F(x_i))}{\partial F(x_i)}$ fit regression tree h to $-g(x_i)$ $F \coloneqq F + \alpha h \ \# \alpha$ is a tunable learning rate, e.g. = 1

True for ℓ = squared loss

- Residual ⇔ negative gradient
- Fit h_i to residual \Leftrightarrow fit h_i to negative gradient
- Update h_i based on residual \Leftrightarrow update h_i based on negative gradient
- → So we are actually updating our model using gradient descent!

Advantage of gradient descent formulation

- Allows **consider**ing **other loss** functions (e.g. more **outlier**-robust, domain-specific, ...)
 - → Derive the corresponding algorithms in the same way

XGBoost: A scalable tree boosting system [Chen & Guestrin, 2016]

A skillfully engineered, highly optimized implementation

- Used by 17/29 winning teams on Kaggle 2015
- Open source (Python, R, Spark, ...): <u>https://github.com/dmlc/xgboost</u>
- Scalable: $10 \times$ faster than usual implementations, scales to $\sim 10^9$ training points
 - Massive use of parallelization/distribution (e.g. on Hadoop/Spark, but also on desktop)

Both types of novelties **purely increase** the **computational performance**, not learning in general

Algorithmic novelties

- Distributed **approximate best split** finding ("weighted quantile sketch" using quantile statistics)
- Exploit sparsity (induced by missing values/one-hot encoding → via default directions for branching)

Parallelization Cache-aware access (for gradient statistics)

• Efficient out-of-core computation (i.e., computation on data not fitting into main memory)

General tricks for tree boosting

- Use aggressive sub-sampling (e.g., selecting only 50% of the data)
- Using column sub-sampling prevents over-fitting even more so than row sub-sampling

^{dmlc} XGBoost kaggle

3. A PATTERN RECOGNITION EXAMPLE

AdaBoost for face detection

A detailed example of a boosted decision stumps application

Challenges

- Slide a window across image and evaluate a face model at every location & scale
 Sliding window detector must evaluate tens of thousands of location/scale combinations
- Faces are rare: 0–10 per image
 - For computational efficiency, we should try spending as little time as possible on non-face windows
 → A megapixel image has ~10⁶ pixels and a comparable number of candidate face locations
 - To avoid having a false positive in every image, the false positive rate has to be less than 10⁻⁶

The Viola-Jones face detector [Viola & Jones, 2001]

- A seminal approach to real-time object detection
 Training is slow, but detection is very fast
- Key ideas
 - Integral images for fast feature evaluation
 - Boosting for feature selection amongst $\sim 10^5$ candidates
 - Attentional cascade for fast & accurate rejection of non-face windows
 → see appendix

Rectangular facial features

...and their efficient calculation via the integral image

Pixel-based features for face detection

- Reminiscent of Haar wavelets •
- Simple sum of pixel intensities within rectangular regions resemble ٠ typical shading patterns of faces

Integral images (*ii*)

Let each pixel be the sum of all pixels left and above ٠

Computing sums of pixels within a rectangle using *ii*

- $sum = ii_A ii_B ii_C + ii_D$
- Needs only 3 additions for any size of rectangle (constant time) ٠

Feature selection via AdaBoost Slide adapted from Grauman & Leibe's AAAI'08 tutorial

Size of feature space

Ca. 160'000 distinct rectangular features per detection window (via scaling/translation)
 → Which ones are good? What is a good subset?

Finding a good succession of features

Feature selection via AdaBoost Slide adapted from Grauman & Leibe's AAAI'08 tutorial

Size of feature space

Ca. 160'000 distinct rectangular features per detection window (via scaling/translation)
 → Which ones are good? What is a good subset?

Finding a good succession of features

Feature selection via AdaBoost Slide adapted from Grauman & Leibe's AAAI'08 tutorial

Size of feature space

Ca. 160'000 distinct rectangular features per detection window (via scaling/translation)
 → Which ones are good? What is a good subset?

Finding a good succession of features

Feature selection via AdaBoost

Slide adapted from Grauman & Leibe's AAAI'08 tutorial

Size of feature space

Ca. 160'000 distinct rectangular features per detection window (via scaling/translation)
 → Which ones are good? What is a good subset?

Finding a good succession of features

Training the boosting classifier Incorporating feature selection

Training set contains face and non-face examples

- **5000 faces** (frontal, many variations among illumination/pose, rescaled to 24×24)
- **300 million non-faces** (extracted from 9'500 non-face images) ٠
- Faces are normalized (scale, translation) ٠
- Initially, all have equal weights ٠

For **each round** of boosting:

- Evaluate each rectangle filter on each example, select best threshold ٠
- Select best filter/threshold combination
- Reweight examples ٠
- \rightarrow Computational complexity: $O(rounds \times examples \times features)$

Result

- A 200-feature classifier can yield **95% detection rate** and a ٠ false positive rate of 1 in 14084
- → Not yet good enough for practice!

Zurich Liniversity of Applied Sciences

Final result of Viola-Jones face detection

After some more engineering...

- Attentional **cascade** for improved false positive rate (\rightarrow see appendix)
- Variance normalization of pixel intensities to cope with different lighting
- Merging multiple detections
- Multi-scale detection by scaling the detector (factor of 1.25 yields good resolution)

Got applied to more visual detection problems

→ facial feature localization, profile faces, male/female image classification, audio fingerprinting, ...

- Solved the problem of face detection in real time (e.g. for digicams)
 → available in OpenCV (<u>http://docs.opencv.org/trunk/d7/d8b/tutorial_py_face_detection.html</u>)
- One of the first mind-blowing computer vision applications before deep learning trend

Zurich University of Applied Sciences

Where's the intelligence? Man vs. machine

- Boosting emerged as an answer for theoretical problems in computational learning theory
 - → solves the "function learning" problem quite well!
- Trees still need hand-crafted feature engineering
 - → solved by deep learning models (on different kinds of data)
- Building strong agents by combining the **"wisdom of a crowd"** of just barely useful agents is again a powerful principle from real life, thus taken over to AI
 - → We see a pattern here: Single good (& simple) ideas are taken over as singletons, but are yet disconnected

Review

- Ensembles combine many weak learners (same or different \mathcal{H}) to a strong classifier by weighted majority voting
- **Bagging** uses **bootstrap resampling** to construct diversity (~complementarity)
 - Random Forest® uses bagging for row subsampling as well as columns (feature) subsampling → very good out-of-the-box model, nearly parameter-free
- AdaBoost subsequently adds new models that focus on the harder (previously misclassified) examples via reweighting
 - A seminal example is the Viola-Jones face detector application using Boosting for feature selection as well as the foundation for classification
- AdaBoost can be **generalize**d to **gradient boosting** (a form of gradient descent)
 - Intuition (in a regression setting) comes by deriving that the residuals (errors) of the last round are equivalent to the negative gradient of the squared error loss function
 - XGBoost is a computationally highly optimized & scalable implementation
- [Opinion] Ensembles make decision trees fashionable again in my eyes (i.e., not just usable on BI-like problems)

APPENDIX

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Gradient boosting extension to (multiclass) classification

Model

- Each class c has its own model $F_c(x)$ (binary classification tree, emitting 0/1)
- Use outputs to compute class probabilities: $P_c(x) = \frac{e^{F_c(x)}}{\sum_i e^{F_i(x)}}$ (softmax)

Overall objective

- Do gradient descent to make true and predicted distribution as close as possible $\forall x_i$
- We achieve this goal by adjusting our models F_c

Removing false alarms while retaining high

Attentional Cascade

detection rate

- **Start** with a **simple** classifier (2 features)
 - → Rejecting many of the negative sub-windows while detecting almost all positive sub-windows
- **Positive** response from the first classifier **triggers** the evaluation the **next** classifier, etc. • → Subsequent classifiers get more complex, hence longer runtime but lower false alarm rate
- A negative outcome at any point leads to the immediate rejection of the sub-window
- Training: •
 - Keep adding features to current stage until its target rates (TP, FP) have been met
 - If overall **FP** is **not low** enough, then **add** another **stage**
 - Use false positives from current stage as the negative training examples for the next stage ٠

Detection rate (TP) vs. false alarm rate (FP) for chained classifiers

Found by multiplying the respective rates of the individual stages ٠

