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Educational objectives

• Remember the basic decision tree training algorithm

• Explain machine learning using the correct technical terms

• Defend your own view on the existence of good general learners

• Build decision tree-based models for labeled data sets using the 

ML development process

In which we describe agents that can improve their behaviour through 

diligent study of their own experiences.

 Reading: AIMA, ch. 18-18.6
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1. INTRODUCTION TO SUPERVISED MACHINE LEARNING

testing / application phase

training phase labels

often replaced by fixed 

training set

2. Test1. Training
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The discipline of machine learning – mapped
«…gives computers the ability to learn without being explicitly programmed.» 

A. Samuel, 1959

ML

inductive
(example-based)

deductive
(logic-based)

transductive
(example  example)

supervised
(learn concepts / predict values)

reinforcement
(learn to act)

unsupervised
(find structure)

Models:

Subtypes of:

Types of:

parametric / non-parametric discriminative / generative predictive / inferential

Search through hypothesis space,

driven by theory and empiricism

linear / non-linear ……

…

fixed size / growing with data learn boundary / blueprint black box / explanatory

deep / shallow

Famous: used in most human learning, 

definition of scientific method
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Supervised machine learning in a nutshell

Training data points, represented 

by some feature vector 𝒙
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Supervised machine learning in a nutshell

Training data points, represented 

by some feature vector 𝒙
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Supervised machine learning in a nutshell

We hope (and design) 

for good generalization 

to unseen test data

Training data points, represented 

by some feature vector 𝒙
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Supervised machine learning in a nutshell

This model is probably 

overfitting the training data

We hope (and design) 

for good generalization 

to unseen test data

Training data points, represented 

by some feature vector 𝒙
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Supervised machine learning in a nutshell

We hope (and design) 

for good generalization 

to unseen test data

We search for models (functions) in a hypothesis space ℋ by minimizing loss ℓ between label 𝑦 and result ℎ(𝒙)

This model seems neither 

to overfit nor underfit

arg min
ℎ∈ℋ

෍

(𝒙,𝑦)∈𝐷

ℓ 𝑦, ℎ 𝒙

Training data points, represented 

by some feature vector 𝒙
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Learning as search through ℋ

ℋ = { }
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Learning as search through ℋ

...ℋ = { }
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Learning as search through ℋ

...

Learning then means finding good 

parameters (sometimes called 𝜃)

Success is largely determined by choosing the 

correct hypothesis space for the problem: 

• Linear? Polynomial?

• Deep neural network? CNN? 

• Ensemble of decision trees? …

ℋ = { }

ℎ 𝒙 = ℎ(𝒙,𝒘)
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Learning as search through ℋ

Learning then means finding good 

parameters (sometimes called 𝜃)

Success is largely determined by choosing the 

correct hypothesis space for the problem: 

• Linear? Polynomial?

• Deep neural network? CNN? 

• Ensemble of decision trees? …

ℋ = { }

ℎ 𝒙 = ℎ(𝒙,𝒘)
A good model complies with Ockham's razor: Maximize

a combination of consistency and simplicity
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What is this current hype about deep learning?
Add depth (layers  capability) to learn features automatically

(0.2, 0.4, …)

container ship

tiger

Classic computer 

vision

(0.4, 0.3, …)

Feature extraction

(SIFT, SURF, LBP, HOG, etc.)

container ship

tiger

Convolutional 

neural networks 

(CNNs)

Takes raw pixels as input, learns 

good features automatically!

Classification

(SVM, neuronal net, etc.)

…

…
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Why study machine learning in general?
«A learner that makes no a priori assumptions regarding the identity of the target concept has no 

rational basis for classifying any unseen instances» [Mitchell, 1997, ch. 2.7.3]

There’s no single best algorithm
• No free lunch theorem (NFL) regarding the general equivalence of learners [Wolpert, 1996]: 

When all hypotheses ℎ are equally likely, the probability of observing an arbitrary 

sequence of cost values during training does not depend upon the learning algorithm ℒ
 there’s no universally best learner (across problems)

• Empirical study [Caruana et al., 2006]:
«Even the best models sometimes perform poorly, and models with poor average 

performance occasionally perform exceptionally well»

 All learning algorithms have advantages & disadvantages, 

depending on the current data

Ascertainment from           .com
• Tabular data: do handcrafted feature engineering, followed by an ensemble of decision trees

• Sensor data (images, speech, …): use a suitable deep neural network
 See https://www.import.io/post/how-to-win-a-kaggle-competition/

Examples of sensor data for pattern recognition tasks («Labeled 

faces in the wild» dataset) and tabular data («Iris» dataset)

https://www.import.io/post/how-to-win-a-kaggle-competition/
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Why is there no universally best learner?
Even if not, can there be a good general learner?

ML research unanimously states that “there is no universally best 

learner”. But a general learner doesn’t need to work for all possible 

kinds of data – it may suffice that it works well on all data relevant to 

human problem solving.  
• [Optional] Conduct a quick search: What does the NFL theorem really claim 

(and what not)?

• Conduct a quick search on the concept of the “inductive bias” of a learning 

algorithm as its brought-in prior knowledge (e.g. Tom Mitchell’s work)

• Discuss: Are there more general forms of prior knowledge that universally 

guide learning?
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2. DECISION TREES
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Attribute-based representations of data
Valid for all kinds of data (       ,             )

Examples described by features 
• Possible attribute values: Boolean, discrete, continuous, etc.

• Example: “Situations where I will/won't wait for a table”

• Goal: classification of examples into positive (𝑇) or negative (𝐹) class

Alternative nearby? Has a bar to wait in? Is it Friday? Really hungry? How crowded already? Raining outside? Did make reservation? Minutes to wait

The label
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Attribute-based representations of data
Valid for all kinds of data (       ,             )

Examples described by features 
• Possible attribute values: Boolean, discrete, continuous, etc.

• Example: “Situations where I will/won't wait for a table”

• Goal: classification of examples into positive (𝑇) or negative (𝐹) class

Alternative nearby? Has a bar to wait in? Is it Friday? Really hungry? How crowded already? Raining outside? Did make reservation? Minutes to wait

The label

𝒙 𝑦
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Decision tree representation of hypotheses

Example: Stuart Russell’s “true” tree to decide whether to wait in a restaurant

Expressiveness
• Decision trees can express any function of the input attributes

E.g. for Boolean functions: truth table row  path to leaf

• Trivial tree ∀ training sets: one path to leaf for each example
But probably won't generalize to new examples

 Prefer to find more compact decision trees
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Hypothesis spaces

Even a constrained hypothesis space is large
• How many distinct decision trees with 𝑛 Boolean attributes?

• = number of Boolean functions

• = number of distinct truth tables with 2𝑛 rows = 22
𝑛

• Example: 6 Boolean attributes 18’446’744’073’709’551’616 possible trees

• How many purely conjunctive hypotheses (e.g., 𝐻𝑢𝑛𝑔𝑟𝑦 ∧ ¬𝑅𝑎𝑖𝑛)

• Each attribute can be either positive, negative, or out of the hypothesis
 3𝑛

More expressive hypothesis spaces
• …increase chance that target function can be expressed 

• …increases number of hypotheses consistent w/ training set
 may get worse predictions 

Due to overfitting we 

have seen earlier
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Decision tree learning

Goal: find a small tree consistent with the training examples

Idea: (recursively) choose “most significant" attribute as root of (sub)tree

Algorithm
•

• PluralityValue(examples) selects the most common output among examples

• Importance(attribute, examples) selects the most important attribute

• On ties, both functions choose randomly

function LearnDecisionTree(examples, attributes) returns a tree

return DecisionTreeLearning(examples, attributes, {})

function DecisionTreeLearning(examples, attributes, parent_examples) returns a tree

if examples is empty then return PluralityValue(parent_examples)

else if all examples have the same classification then return the classification

else if attributes is empty then return PluralityValue(examples)

else

A  𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝑎𝑡𝑡𝑟𝑖𝑏𝑢𝑡𝑒𝑠Importance(a, examples)
tree  a new decision tree with root test A

for each value 𝑣𝑘 of A do #for categorical features

exs  {e: e∈examples and e.A=𝑣𝑘}
subtree  DecisionTreeLearning(exs, attributes-A, examples)

add a branch to tree with label (A=𝑣𝑘) and subtree subtree
return tree
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Choosing an attribute
How to implement Importance(attribute, examples)

Idea: A good attribute splits examples into subsets that are (ideally) “all pos" or “all neg“

Example
•

• 𝑃𝑎𝑡𝑟𝑜𝑛𝑠 is better choice: gives information about the classification

Recap: Information theory
• Information answers questions: The more cluelessness an observation removes, the more 

information it contains

• Inversely proportional to entropy (uncertainty of a random variable)

• A Boolean answer with prior < 0.5, 0.5 > has entropy= 1 𝑏𝑖𝑡 (if we remove this uncertainty, we gain 1 bit of info.)

• A coin giving heads 99% of the time has entropy close to 0 (≈ 0.08 𝑏𝑖𝑡𝑠 almost no info.-gain when observed)

• Entropy in an observation (having prior < 𝑃1, … , 𝑃𝑛 >): 𝐻 𝑃1, … , 𝑃𝑛 = −σ𝑖=1
𝑛 𝑃𝑖 log2 𝑃𝑖

Question: “Would I wait if 

the restaurant’s type is 𝑥?”

Answer: 

“∀𝑥: fifty-fifty”

Question: “Would I wait if 

the crowdedness is 𝑥?”

Answer: “𝑥 = 𝑁𝑜𝑛𝑒: 

no; 𝑥 = 𝑆𝑜𝑚𝑒: yes; 

𝑥 = 𝐹𝑢𝑙𝑙: not clear”

Sum over all 

possible values

Bits needed to encode 

data, weighted by prob.

Prior: Probabilities of all possible values of 

the random variable w.r.t. answer of question 

0.5
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Information gain as splitting criterion

Suppose we have 𝑝 positive and 𝑛 negative examples at the root

• 𝐻
𝑝

𝑝+𝑛
,

𝑛

𝑝+𝑛
bits needed to classify a new example

• E.g., for the 12 restaurant examples, 𝑝 = 𝑛 = 6, so we need overall 1 bit

An attribute 𝐴 splits the examples 𝐸 into subsets 𝐸𝑖 (one per possible value)

• Each of which (we hope) needs less information to complete the classification

• Let 𝐸𝑖 have 𝑝𝑖 positive and 𝑛𝑖 negative examples

 𝐻
𝑝𝑖

𝑝𝑖+𝑛𝑖
,

𝑛𝑖

𝑝𝑖+𝑛𝑖
bits needed to classify a new example

• Expected number of necessary bits per example over all branches 𝑖 stemming from 𝐴 is

Remainder A =෍
𝑖

𝑝𝑖 + 𝑛𝑖
𝑝 + 𝑛

𝐻
𝑝𝑖

𝑝𝑖 + 𝑛𝑖
,

𝑛𝑖
𝑝𝑖 + 𝑛𝑖

• For 𝑃𝑎𝑡𝑟𝑜𝑛𝑠 this is 0.459 𝑏𝑖𝑡𝑠, for 𝑇𝑦𝑝𝑒 this is (still) 1 𝑏𝑖𝑡
 Choose the attribute that minimizes the remaining information needed, …

 i.e., maximizes information gain: 𝐺𝑎𝑖𝑛 𝐴 = 𝐻
𝑝

𝑝+𝑛
,

𝑛

𝑝+𝑛
− 𝑅𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟(𝐴)

Entropy of branch 𝑖, 
weighted by branch’s size

Entropy of original problem Entropy remaining after splitting on 𝐴
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The learned decision tree
Based on our 12 examples

• Substantially simpler than “true" tree
 E.g., 𝑅𝑒𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛 and 𝑅𝑎𝑖𝑛𝑖𝑛𝑔 are not needed (perfect classification possible without)

• A more complex hypothesis isn't justified by the small amount of data
 But what makes one tree better than another?
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3. DOING MACHINE LEARNING
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Performance measurement
The ML development process being an empirical science

How do we know that ℎ ≈ 𝑓 (the true function)? 
1. Use theorems of computational/statistical learning theory

2. Try ℎ on a new test set of examples
• Prerequisite for inductive learning: generalizes (only) to same distribution as seen in training set!

• Best practice: use cross-validation to train & validate on different sets before final test

3. Report performance using recognized figures of merit
• E.g. accuracy (or test set error) if all errors are equally costly: accuracy =

𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁

• E.g. recall/precision if false alarms and misses differ in cost: recall =
𝑇𝑃

𝑇𝑃+𝐹𝑁
, precision =

𝑇𝑃

𝑇𝑃+𝐹𝑃

• Conduct repeatable experiments (i.e., fully scriptable, full documentation of inputs and results)

Test set (ca. 20%)𝑘-fold cross validation (CV) (𝑘 = 5. . 10)

…

classification →
↓ label 

1 0

1 true positive (TP, “hit”) false negative (FN, “miss”)

0 false positive (FP, “false alarm”) true negative (TN)

Hume's “Problem of Induction” (1740): when is generalization admissible?
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Debugging machine learning models

Learning curve: %correct on train & test set as a function of training set size

• Diagnostic: reveals over- and underfitting as well as realizability ( see appendix)

What to try next when a given model generalizes poorly?
• Get more training examples  fixes overfitting

• Try smaller sets of features  fixes overfitting

• Try getting additional features  fixes underfitting

• Try adding polynomial features 𝑥1, 𝑥2, 𝑥1
2, 𝑥2

2, … fixes underfitting

• Try less regularization fixes underfitting

• Try more regularization fixes overfitting

• Build ensembles fixes overfitting, uses limited data best ( see V09)

%
 c

o
rr

e
c
t

Training set size

training set accuracy

test set accuracy

1

large

small %
 c

o
rr

e
c
t

Training set size

training set accuracy

test set accuracy

1

gap

Underfitting Overfitting

Regularization: Any method that limits the expressiveness of the hypothesis 

space by adding constraints to learning; e.g., pruning decision trees.
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Where’s the intelligence?
Man vs. machine

• Machine learning offers general function approximations purely learned from examples

• But: Success depends on a good fit of the algorithm’s inductive bias to problem at hand
 i.e., clever algorithm choice based on experience

• Learning is a powerful principle of self-optimization, applicable to all components of 

previously seen agent designs

• But: General (domain crossing, knowledge-linking) learning must be based on way better 

inclusion of unsupervised learning principles (besides general inductive biases)

 current avant-garde deep learning research explores this route ( see e.g. GANs in V11)

• Decision trees in principle are simple models (appreciated for their simplicity in formalism and 

interpretation), suitable only for Excel-like data

• But: Combining multiple trees (called an “ensemble”) makes them extremely powerful for 

all but pattern recognition (i.e., sensor data-based) problems
(and sometimes even there  see V09)
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Review

• Learning needed for unknown environments, “lazy designers”

• Learning agent = performance element (testing / application phase) 

+ learning element (training phase)

• Learning method (algorithm) depends on… 
• type of performance element (classify? regress? control?), 

• available feedback (labels), 

• type of component to be improved (representation? utility function? action?),

• and data representation (numerical or categorical data, logical clauses, raw pixels, …)

• For supervised learning, the aim is to find a simple hypothesis that is 

approximately consistent with training examples and generalizes well

• Decision tree learning uses information gain
• Popular models because of easy interpretability

• Many famous implementations (e.g. CART, C4.5®)

• As ensembles: very good general-purpose out-of-the-box models
(e.g. Random Forest®, XGBoost see V09)

• Learning performance = prediction accuracy measured on separate test set 
• Development using 5-fold cross validation (without ever looking at test set!)

• Systematic and repeatable experiments are paramount (e.g. using UNIX-style scripts)
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APPENDIX
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Learning curves
Diagnosing learning problems

Learning curve, simplified: %correct on test set only as a function of training set size

Accuracy shown in learning curve depends on
• Realizability (target function expressible in chosen hypothesis space?)

• Non-realizability can be due to missing attributes 

• or restricted hypothesis class (e.g., a thresholded linear function might be overly simplistic)

• Redundant features 
(e.g., loads of irrelevant attributes make learning difficult)
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Why is this current hype about deep learning?
The ImageNet Competition (more on deep learning  see appendix)

1000 categories

1       mio. training examples                                                                                                  

…

A. Krizhevsky uses a «Deep Convolutional Neural 

Network» (CNN) for the first time
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Why is this current hype about deep learning?
The ImageNet Competition (more on deep learning  see appendix)

1000 categories

1       mio. training examples                                                                                                  

…

A. Krizhevsky uses a «Deep Convolutional Neural 

Network» (CNN) for the first time

2015: Computers learned to «see»

4.95% Microsoft (Feb 06) 

 super-human performance (human: 5.10%)

4.80% Google (Feb 11)

4.58% Baidu (May 11)

3.57% Microsoft  (Dec 10)
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2016: A summer of breakthroughs in ML
…enabled by deep learning

Impressive novelties within a summer’s timespan
• Game playing: beating the human Go world champion

• Audio synthesis: Synthesizing speech & music sample by sample

• Art style transfer: Redraw the content of a picture in the style of any painting

• Image synthesis: Completion of missing parts in pictures

• Text synthesis: Generation of text in specific styles (e.g., Shakespeare, 𝐿𝐴𝑇𝐸𝑋, …)

• Word vectors: Arithmetic with semantic meaning of text and images

 See next slides
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Generated 

speech from text

Generated music 

out of creativity
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Generated 

speech from text

Generated music 

out of creativity
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…and the list could be continued
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…and the list could be continued
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…and the list could be continued
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…and the list could be continued
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Inductive supervised learning

Assumption
• A model fit to enough training examples…

• …will generalize well to unseen test data

Source: http://lear.inrialpes.fr/job/postdoc-large-scale-classif-11-img/attribs_patchwork.jpg

http://lear.inrialpes.fr/job/postdoc-large-scale-classif-11-img/attribs_patchwork.jpg
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Inductive supervised learning

Assumption
• A model fit to enough training examples…

• …will generalize well to unseen test data

Method
• Search for parameters of a given class of

functions…

• …such that every training input (e.g. an 

image) is mapped to the correct output label
(e.g. «car»)

Source: http://lear.inrialpes.fr/job/postdoc-large-scale-classif-11-img/attribs_patchwork.jpg

http://lear.inrialpes.fr/job/postdoc-large-scale-classif-11-img/attribs_patchwork.jpg
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What is the effect of parameter search?
What is the effect of more capable function classes?

Neuron

Features (e.g. pixels)

Adjustable parameters
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(threshold)

Result (e.g. «1» for «car»)

𝑦



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

57

What is the effect of parameter search?
What is the effect of more capable function classes?

Neuron

Features (e.g. pixels)

Adjustable parameters

Decision

(threshold)

Result (e.g. «1» for «car»)

𝑦



Zurich University of Applied Sciences and Arts

InIT Institute of  Applied Information Technology (stdm)

58
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What is the effect of more capable function classes?
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How are the parameters found?

• Definition of the neural net: 𝑓
𝜃
𝑥 = 𝑦

with image 𝑥, true result 𝑦 and all parameters Ԧ𝜃

( Ԧ𝜃 = {𝑤1, 𝑤2} chosen randomly at start)

• Error measure: 𝐽 Ԧ𝜃 =
1

𝑁
σ𝑖=1
𝑁 𝑓

𝜃
𝑥𝑖 − 𝑦𝑖

2

Mean squared error

 Error landscape

1
0

𝐽(𝜃0, 𝜃1)
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What does a neural network «see»?
A hierarchy of progressively complex features

Quelle: https://www.pinterest.com/explore/artificial-neural-network/

Sources: https://www.pinterest.com/explore/artificial-neural-network/

Olah, et al., "Feature Visualization", Distill, 2017, https://distill.pub/2017/feature-visualization/. 

https://www.pinterest.com/explore/artificial-neural-network/
https://www.pinterest.com/explore/artificial-neural-network/
https://distill.pub/2017/feature-visualization/
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What does a neural network «see»?
A hierarchy of progressively complex features

Quelle: https://www.pinterest.com/explore/artificial-neural-network/

Sources: https://www.pinterest.com/explore/artificial-neural-network/

Olah, et al., "Feature Visualization", Distill, 2017, https://distill.pub/2017/feature-visualization/. 

https://www.pinterest.com/explore/artificial-neural-network/
https://www.pinterest.com/explore/artificial-neural-network/
https://distill.pub/2017/feature-visualization/
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What does a neural network «see»?
A hierarchy of progressively complex features, visualized

Source: http://vision03.csail.mit.edu/cnn_art/data/single_layer.png

http://vision03.csail.mit.edu/cnn_art/data/single_layer.png

