
Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

Artificial Intelligence

V05: Constraint satisfaction problems

Introduction to CSPs

CSP solving

Solving CSPs in practice

Based on material by Stuart Russell, UC Berkeley

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

2

Educational objectives

• Remember what makes CSP solving more powerful than pure

search techniques

• Explain how CSPs are solved on the algorithmic level by

backtracking using the MRV / degree- / least constraining value

heuristics and forward checking / constrained propagation

• Formulate a suitable problem as a CSP

“In which we see how treating states as more than just little black boxes leads to

the invention of a range of powerful new search methods and a deeper

understanding of problem structure and complexity.”

 Reading: AIMA, ch. 6

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

3

1. INTRODUCTION TO CSPS

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

4

Constraint satisfaction problems (CSPs)

Standard search problem
• State is a “black box“ – any data structure that supports Goal Test, Eval, Successor

CSP
• State is defined by variables 𝑋𝑖 with values from domain 𝐷𝑖
• Goal Test is a set of constraints: allowable combinations of values for subsets of variables

 Simple example of a formal representation language

 Allows useful general-purpose algorithms with more power than standard search

A state thus has a factored

representation, consisting of

many variables and their

partial assignment of values

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

5

Example: Map-coloring

Variables: 𝑊𝐴, 𝑁𝑇, 𝑄, 𝑁𝑆𝑊, 𝑉, 𝑆𝐴, 𝑇

Domains: 𝐷𝑖 = 𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒

Constraints: adjacent regions must have different colors

• e.g. 𝑊𝐴 ≠ 𝑁𝑇 (if language allows this; otherwise (𝑊𝐴,𝑁𝑇) ∈ 𝑟𝑒𝑑, 𝑔𝑟𝑒𝑒𝑛 , 𝑟𝑒𝑑, 𝑏𝑙𝑢𝑒 , 𝑔𝑟𝑒𝑒𝑛, 𝑟𝑒𝑑 , 𝑔𝑟𝑒𝑒𝑛, 𝑏𝑙𝑢𝑒 ,…)

Solutions: assignments satisfying all constraints

• e.g. 𝑊𝐴 = 𝑟𝑒𝑑,𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛, 𝑄 = 𝑟𝑒𝑑,𝑁𝑆𝑊 = 𝑔𝑟𝑒𝑒𝑛, 𝑉 = 𝑟𝑒𝑑, 𝑆𝐴 = 𝑏𝑙𝑢𝑒, 𝑇 = 𝑔𝑟𝑒𝑒𝑛

Binary CSPs (each constraint relates at most two

variables) have a constraint graph. General-purpose

CSP algorithms use the graph structure to speed up

search: E.g., 𝑇 is an independent subproblem!

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

6

Varieties of CSPs

Discrete variables
• Finite domains of size 𝒅 𝑂(𝑑𝑛) complete assignments (𝑛 is number of variables)

• Other finite domains (integers, strings, etc.)
• e.g., job scheduling: variables are days (or integer-minutes) for each job

• need a constraint language, e.g., 𝑆𝑡𝑎𝑟𝑡𝐽𝑜𝑏1 + 5 ≤ 𝑆𝑡𝑎𝑟𝑡𝐽𝑜𝑏3
• linear constraints solvable, nonlinear undecidable

Continuous variables
• e.g., precise start/end times for Hubble Telescope observations

• linear constraints solvable in polynomial time by linear programming methods

Varieties of constraints
• Unary constraints: involve a single variable, e.g. 𝑆𝐴 ≠ 𝑔𝑟𝑒𝑒𝑛
• Binary constraints involve variable pairs, e.g., 𝑆𝐴 ≠ 𝑊𝐴 (all constraints can be made binary)

• Higher-order constraints involve 3 or more variables, e.g. column constraints in Sudoku

• Preferences (soft) constraints, e.g. 𝑟𝑒𝑑 𝐼𝑆_𝐵𝐸𝑇𝑇𝐸𝑅_𝑇𝐻𝐴𝑁 𝑔𝑟𝑒𝑒𝑛
 often representable by a cost for each assignment: constrained optimization problems (COP)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

7

Examples

Car assembly
(job scheduling, simplified)

• Variables: 𝐴𝑥𝑙𝑒𝐹, 𝐴𝑥𝑙𝑒𝐵, 𝑊ℎ𝑒𝑒𝑙𝑅𝐹, 𝑊ℎ𝑒𝑒𝑙𝐿𝐹,

𝑊ℎ𝑒𝑒𝑙𝑅𝐵, 𝑊ℎ𝑒𝑒𝑙𝐿𝐵, 𝑁𝑢𝑡𝑠𝑅𝐹, 𝑁𝑢𝑡𝑠𝐿𝐹, 𝑁𝑢𝑡𝑠𝑅𝐵,

𝑁𝑢𝑡𝑠𝐿𝐵, 𝐶𝑎𝑝𝑅𝐹, 𝐶𝑎𝑝𝐿𝐹, 𝐶𝑎𝑝𝑅𝐵, 𝐶𝑎𝑝𝐿𝐵, 𝐼𝑛𝑠𝑝𝑒𝑐𝑡

• Domains: 𝐷𝑖 = 1,2,3,… , 27

(start time of tasks as integer, due to an overall

runtime of 30 minutes)

• Constraints:

(precedence constraints among tasks)

• 𝐴𝑥𝑙𝑒𝐹 + 10 ≤ 𝑊ℎ𝑒𝑒𝑙𝑅𝐹; 𝐴𝑥𝑙𝑒𝐹 + 10 ≤ 𝑊ℎ𝑒𝑒𝑙𝐿𝐹
• 𝐴𝑥𝑙𝑒𝐵 + 10 ≤ 𝑊ℎ𝑒𝑒𝑙𝑅𝐵; 𝐴𝑥𝑙𝑒𝐵 + 10 ≤ 𝑊ℎ𝑒𝑒𝑙𝐿𝐵
• 𝐴𝑥𝑙𝑒𝐹 + 10 ≤ 𝐴𝑥𝑙𝑒𝐵 𝒐𝒓 𝐴𝑥𝑙𝑒𝐵 + 10 ≤ 𝐴𝑥𝑙𝑒𝐹
• …

Cryptarithmetic
(which letter represents which digit?)

• Variables: 𝐹, 𝑇, 𝑈, 𝑊, 𝑅, 𝑂, 𝐶1, 𝐶2, 𝐶3

• Domains: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

• Constraints:
• 𝑎𝑙𝑙𝑑𝑖𝑓𝑓(𝐹, 𝑇, 𝑈,𝑊, 𝑅, 𝑂)
• 𝑂 + 𝑂 = 𝑅 + 10𝐶1
• 𝐶1 +𝑊 +𝑊 = 𝑈 + 10𝐶2
• 𝐶2 + 𝑇 + 𝑇 = 𝑂 + 10𝐶3
• 𝐶3 = 𝐹

𝐶1, 𝐶2, 𝐶3: auxiliary

variables for carryover

2x axle:

4x wheel:

4x nuts:

4x caps:

1x inspect:

Installing an axle takes 10 minutes

and must be prior to wheel assembly

Only one shared tool for axle

installing, so can´t be simultaneous

Constraint

hypergraphs

have square

(hyper-)nodes

for 𝑛-ary

constraints

A so-called global constraint

involves an arbitrary

number of variables

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

8

Real-world CSPs

• Assignment problems
e.g., who teaches what class

• Timetabling problems
e.g., which class is offered when and where?

• Optimization with spreadsheets
e.g., debugging (Abreu, Riboira & Wotawa, 2012)

• Other scheduling tasks
e.g., in transportation or factory workflow

• Other layout tasks
e.g., floor planning or hardware configuration

 Notice that many real-world problems involve real-valued variables

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

9

Exercise: Formulating Sudoku as a CSP
 see also P03

Sudoku puzzles are played on a 9x9 board and enjoyed by

millions of people daily. The goal is to fill in each cell with a

single digit, subject to several constraints:
• Each digit must be present in each row exactly once

• Each digit must be present in each column exactly once

• Each digit must be present in each box exactly once
(the 9x9 board consists of 9 non-overlapping 3x3 boxes

 see thicker lines below)

• Each digit must be consistent with any digit already placed on

the original board by the riddle issuer

 Formulate the Sudoku riddle below as a CSP using pen

& paper (i.e., decide on variables, domains and constraints)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

10

2. CSP SOLVING

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

11

Standard search formulation
Seriously flawed, thus incremental

Let's start with the straightforward, dumb approach, then fix it
• States are defined by the values assigned so far

• Initial state: the empty assignment {}
• Successor function: assign a value to an unassigned variable without conflict with current assignment

 fail if no legal assignment (not fixable!)

• Goal test: the current assignment is complete

• CSPs all have a common structure
 This is the same for all CSPs, no domain-specific adaptations (transition models etc.) needed! 

• Every solution appears at depth 𝑛 (for 𝑛 variables)

 use depth-first search

• Path is irrelevant, so can also use complete-state formulation (as with local search)

 i.e., evolve one state instead of creating new ones

• Branching factor 𝑏 = 𝑛 − 𝑙 𝑑 at depth 𝑙
 hence 𝒏!𝒅𝒏 leaves!   

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

12

Backtracking search

First improvement
• Variable assignments are commutative

e.g. [𝑊𝐴 = 𝑟𝑒𝑑, 𝑡ℎ𝑒𝑛 𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛] same as 𝑁𝑇 = 𝑔𝑟𝑒𝑒𝑛, 𝑡ℎ𝑒𝑛 𝑊𝐴 = 𝑟𝑒𝑑
 Only need to consider assignments to a single variable at each node

 𝑏 = 𝑑, thus there are 𝑑𝑛 leaves

Backtracking search
• Using depth-first search with single-variable assignments

for CSPs is called backtracking search

• It is the basic uninformed algorithm for CSPs
 Can solve 𝑛-queens for 𝑛 = 25

Backtracking search considers

one variable per level

Remember V04: simple heuristic

solves 1’000’000-queens…

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

13

Backtracking search
Algorithm & suggested improvements

function Backtracking-Search(csp) returns solution/failure

return Backtrack({}, csp)

function Backtrack(assignment, csp) returns solution/failure

if assignment is complete then return assignment

var  Select-Unassigned-Variable(csp)

for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment then

add {var = value} to assignment

inferences  Inference(csp, var, value) #optional

if inferences ≠ failure then #optional

add inferences to assignment #optional

result  Backtrack(assignment, csp)

if result ≠ failure then return result

else remove {var = value} from assignment

return failure

General-purpose methods can give huge gains in speed:
• Which variable should be assigned next?

• In what order should its values be tried?

• Can we detect inevitable failure early?

• Can we take advantage of problem structure?
 can be achieved by implementing the bold/italic functions above

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

14

Which variable should be assigned next?
Ideas for Select-Unassigned-Variable(csp)

Minimum remaining values (MRV):
• Choose the variable with the fewest legal values
 failing fast prunes large portions of the tree

• Can work up to 1’000 times better than picking just the next (or a random) unassigned

variable (very problem dependent)

Degree heuristic
• Choose the variable that adds most constraints on remaining variables
 In practice: Used as tie-breaker among MRV variables

All have equal

opportunities (3)
Neighbors are

restricted now (2)

𝑆𝐴 can only be

𝑏𝑙𝑢𝑒 now

𝑆𝐴 imposes constraints on all 5 neighbors Several equal options from here (e.g., 𝑁𝑇, 𝑄, 𝑁𝑆𝑊 have degree 2)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

15

In what order should its values be tried?
Ideas for Order-Domain-Values(var, assignment, csp)

Least constraining value
• Given 𝑣𝑎𝑟, choose the value that rules out the fewest values in the remaining 𝑣𝑎𝑟
 Combining this with the previous 2 heuristics makes 1′000-queens feasible (instead 25)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

16

Can we detect inevitable failure early?
Ideas for Inference(csp, var, value)

Forward checking
• Idea: Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

17

Can we detect inevitable failure early?
Ideas for Inference(csp, var, value)

Forward checking
• Idea: Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

18

Can we detect inevitable failure early?
Ideas for Inference(csp, var, value)

Forward checking
• Idea: Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

19

Can we detect inevitable failure early?
Ideas for Inference(csp, var, value)

Forward checking
• Idea: Keep track of remaining legal values for unassigned variables
 Terminate search when any variable has no legal values

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

20

Can we detect inevitable failure early? (contd.)
Ideas for Inference(csp, var, value)

Constraint propagation
• Forward checking propagates information from assigned variables only to immediate

neighbours (i.e., fails to do so recursively after a change in some domain)

 e.g., 𝑁𝑇 and 𝑆𝐴 cannot both be 𝑏𝑙𝑢𝑒!

 Constraint propagation would repeatedly enforce constraints locally

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

21

Can we detect inevitable failure early? (contd.)
Ideas for Inference(csp, var, value)

Arc

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

22

Can we detect inevitable failure early? (contd.)
Ideas for Inference(csp, var, value)

Arc

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

23

Can we detect inevitable failure early? (contd.)
Ideas for Inference(csp, var, value)

Arc

• If 𝑋 loses a value, neighbors of 𝑋 need to be rechecked ( see AC-3 algorithm in appendix)

x

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

24

Can we detect inevitable failure early? (contd.)
Ideas for Inference(csp, var, value)

Arc

• If 𝑋 loses a value, neighbors of 𝑋 need to be rechecked ( see AC-3 algorithm in appendix)

x x

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

25

Can we detect inevitable failure early? (contd.)
Ideas for Inference(csp, var, value)

Arc

• If 𝑋 loses a value, neighbors of 𝑋 need to be rechecked ( see AC-3 algorithm in appendix)

x x x

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

26

Backtracking search
Revisiting suggested improvements

function Backtracking-Search(csp) returns solution/failure

return Backtrack({}, csp)

function Backtrack(assignment, csp) returns solution/failure

if assignment is complete then return assignment

var  Select-Unassigned-Variable(csp)

for each value in Order-Domain-Values(var, assignment, csp) do

if value is consistent with assignment then

add {var = value} to assignment

inferences  Inference(csp, var, value) #optional

if inferences ≠ failure then #optional

add inferences to assignment #optional

result  Backtrack(assignment, csp)

if result ≠ failure then return result

else remove {var = value} from assignment

return failure

General-purpose methods can give huge gains in speed:
• Which variable next? MRV (fewest legal values), degree heuristic (most constraints on rest) on tie

• What value first? Least constraining value

• How detect failure early? Constraint propagation via arc consistency

• Can we take advantage of problem structure?  next

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

27

Can we take advantage of problem structure?
Exploiting structure in the constraint graph

Example
• Tasmania and mainland are independent subproblems,

identifiable as connected components of constraint graph
 can be solved individually, and solution combined

• Suppose each subproblem has 𝑐 variables (out of 𝑛 total)

Worst-case solution cost is 𝑛/𝑐 ⋅ 𝑑𝑐 (linear in 𝑛)

• This is a dramatic improvement!
• E.g., 𝑛 = 80, 𝑑 = 2, 𝑐 = 20:

 280 = 4 billion years (at 10 million nodes/second)

 4 ⋅ 220 = 0.4 seconds (at 10 million nodes/second)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

28

Can we take advantage of problem structure?
Exploiting structure in the constraint graph (contd.)

Tree-structured CSPs
• A (constraint) graph is a tree if any 2 variables are connected by only 1 path (i.e., no loops)

• Theorem: If the constraint graph has no loops, the CSP can be solved in 𝑶(𝒏𝒅𝟐) time
 Compare to general CSPs, where worst-case time is 𝑶 𝒅𝒏

 Also applies to logical and probabilistic reasoning

 Important example of the relation between syntactic restrictions and the complexity of reasoning

Algorithm for tree-structured CSPs
• Do a topological sort: Choose a variable as root, then order variables from root to leaves such that

every node's parent precedes it in the ordering

• Create directed arc-consistency by: For 𝑗 from 𝑛 down to 2, make 𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑗), 𝑋𝑗 arc consistent

• For 𝑗 from 1 to 𝑛, assign 𝑋𝑗 consistently with 𝑃𝑎𝑟𝑒𝑛𝑡(𝑋𝑗)

Example of a tree-structured constraint

graph being topologically sorted

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

29

3. SOLVING CSPS IN PRACTICE

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

30

Exploiting non-optimal structure

Nearly tree-structured CSPs
• Many real-world CSPs can be converted to tree-structured problems
 then solved by divide & conquer

• …by choosing a cycle cutset: a set of variables that if removed make the graph a tree

• …and subsequent cutset conditioning: instantiate (in all ways) the variables in the cutset,

then prune choices from remaining variables in the tree
 Very fast for small cutset size 𝑐: Runtime is 𝑂 𝑑𝑐 ⋅ (𝑛 − 𝑐)𝑑2 (linear in 𝑛)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

31

Other advice

• Exploiting structure in the values by breaking symmetry reduces search space up to 𝑑!
(e.g., we have to give 𝑊𝐴, 𝑁𝑇, 𝑆𝐴 3 different colors, but have 3! options to do so

 can be reduced by adding a symmetry-breaking constraint like 𝑁𝑇 < 𝑆𝐴 < 𝑊𝐴)

• Local search ( see V04) is very effective for CSPs

 Min-conflicts heuristic very useful: start with random full assignment, subsequently

change the variable that minimizes remaining conflicts

 E.g., hill climbing search with min-conflicts solves 𝑛-queens in constant time with high

probability (even for 𝑛 = 10’000’000)

• Constraint learning ( see appendix) is one of the most important techniques in modern

CSP solvers
(together with backtracking search, the MRV / degree- / least constraining value heuristics, and forward

checking / arc consistency)

• Trade-off between the cost of enforcing consistency and the reduction in search time
(some researchers favor pure forward checking, some full arc consistency after each assignment

 full arc consistency pays off for harder CSPs)

• Comparing CSP algorithms is done empirically (no algorithm dominates on all CSPs)

Applicable because CSPs also work

with complete-state formulations

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

32

Where’s the intelligence?
Man vs. machine

• If classical search is brute force…

• …CSP solving enhances it using the following powerful ingredients:
• General-purpose heuristics

(MRV etc.  not problem- or domain specific!)

• Inference over constraints
(constraint propagation  allows e.g. for intelligent backjumping)

• Exploiting structure in the problem definition to vastly prune the search space
(e.g. symmetric values, tree-like constraint graph  implements a general divide & conquer approach)

• CSP solving thus can reduce the time complexity of some problems from exponential to

linear, by acting more “clever”

• Human intelligence goes into stating the task as a CSP

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

33

Review

• CSPs are a special kind of problem:
• states defined by values of a fixed set of variables

• goal test defined by constraints on variable values

• Backtracking = depth-first search with one variable assigned per node
• Variable ordering and value selection heuristics help significantly

• Forward checking prevents assignments that guarantee later failure

• Constraint propagation (e.g., arc consistency) does additional work to constrain

values and detect inconsistencies

• The CSP representation allows analysis of problem structure
• Tree-structured CSPs can be solved in linear time

• Iterative min-conflicts is usually effective in practice

• Methods can handle problems with up to 𝟏𝟎𝟎’𝟎𝟎𝟎 variables, and up to

𝟏’𝟎𝟎𝟎’𝟎𝟎𝟎 constraints in practice

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

34

APPENDIX

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

35

Arc consistency
AC-3 Algorithm

function AC-3(csp) returns the CSP, possibly with reduced domains

inputs: csp, a binary CSP with variables (𝑋, 𝐷, 𝐶)
local variables: queue, a queue of arcs, initially all the arcs in csp

while queue is not empty do

(𝑋𝑖, 𝑋𝑗)  Remove-First(queue)

if Revise(csp, 𝑋𝑖, 𝑋𝑗) then

if size of 𝐷𝑖 = 0 then return false

for each 𝑋k in 𝑋i .Neighbors – {𝑋j} do

add(𝑋k, 𝑋i) to queue
return true

function Revise(csp, 𝑋𝑖, 𝑋𝑗) returns true iff we revise the domain of 𝑋𝑖
revised  false

for each 𝑥 in 𝐷𝑖 do

if no value 𝑦 in 𝐷j allows (𝑥,𝑦) to satisfy the constraint 𝑋𝑖 and 𝑋𝑗 then

delete 𝑥 from 𝐷i
revised  true

return revised

• After applying AC-3, either every arc is consistent or some variable has an empty domain
 CSP not solvable

• Time complexity: 𝑂 𝑛2𝑑3 (can be reduced to 𝑂 𝑛2𝑑2 , but detecting all is NP-hard)

• Trivia: Name stems from this algorithm being the third one in the paper (Mackworth, 1977)

Zurich University of Applied Sciences and Arts

InIT Institute of Applied Information Technology (stdm)

36

Can we detect inevitable failure early? (contd.)
Ideas for Inference(csp, var, value)

Constraint learning
• If Backtrack() fails on 𝑋𝑖, it backs up to the last variable and tries another value
 would be more intelligent to track back to one of the variables that caused 𝐷𝑖 = {}

• Forward checking etc. already has this information
 can be stored in a conflict set

• Constraint learning adds new constraints on the fly for sets of assignments (so-called no-

goods) that repeatedly caused Backtrack() to fail

