Zurich University of Applied Sciences

Artificial Intelligence V05: Constraint satisfaction problems

Based on material by Stuart Russell, UC Berkeley

Educational objectives

- Remember what makes CSP solving more powerful than pure search techniques
- Explain how CSPs are solved on the algorithmic level by backtracking using the MRV / degree- / least constraining value heuristics and forward checking / constrained propagation
- Formulate a suitable problem as a CSP

"In which we see how treating states as more than just little black boxes leads to the invention of a range of powerful new search methods and a deeper understanding of problem structure and complexity."

→ Reading: AIMA, ch. 6

Zurich University of Applied Sciences

1. INTRODUCTION TO CSPS

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Constraint satisfaction problems (CSPs)

Zurich University

Standard search problem

• State is a "black box" – any data structure that supports Goal Test, Eval, Successor

5	3			7					
6	-		1	9	5				
	9	8					6		
8				6				3	
4			8		3			1	
7				2				6	
	6					2	8		
			4	1	9			5	
				8			7	9	

CSP

- State is defined by variables X_i with values from domain D_i
- Goal Test is a set of constraints: allowable combinations of values for subsets of variables
- → Simple example of a **formal** representation **language**
- → Allows useful **general-purpose algorithms** with **more power** than standard search

Zurich University of Applied Sciences

Example: Map-coloring

Domains: $D_i = \{red, green, blue\}$

Constraints: adjacent regions must have different colors

- e.g. $WA \neq NT$ (if language allows this; otherwise $(WA, NT) \in \{(red, green), (red, blue), (green, red), (green, blue), ... \}$) Solutions: assignments satisfying all constraints
- e.g. {*WA* = *red*, *NT* = *green*, *Q* = *red*, *NSW* = *green*, *V* = *red*, *SA* = *blue*, *T* = *green*}

Varieties of CSPs

Discrete variables

- Finite domains of size $d \rightarrow O(d^n)$ complete assignments (*n* is number of variables)
- Other finite domains (integers, strings, etc.)
 - e.g., job scheduling: variables are days (or integer-minutes) for each job
 - need a constraint language, e.g., $StartJob_1 + 5 \leq StartJob_3$
 - linear constraints solvable, nonlinear undecidable

Continuous variables

- e.g., precise start/end times for Hubble Telescope observations
- linear constraints solvable in polynomial time by linear programming methods

Varieties of constraints

- **Unary** constraints: involve a single variable, e.g. $SA \neq green$
- **Binary** constraints involve variable pairs, e.g., $SA \neq WA$ (all constraints can be made binary)
- Higher-order constraints involve 3 or more variables, e.g. column constraints in Sudoku
- Preferences (soft) constraints, e.g. *red IS_BETTER_THAN green* → often representable by a cost for each assignment: constrained optimization problems (COP)

Zurich University

Examples

Car assembly

(job scheduling, simplified)

- Variables: $Axle_F$, $Axle_B$, $Wheel_{RF}$, $Wheel_{LF}$, $Wheel_{RB}$, $Wheel_{LB}$, $Nuts_{RF}$, $Nuts_{LF}$, $Nuts_{RB}$, $Nuts_{LB}$, Cap_{RF} , Cap_{LF} , Cap_{RB} , Cap_{LB} , Inspect
- Domains: D_i = {1,2,3, ..., 27} (start time of tasks as integer, due to an overall runtime of 30 minutes)

Installing an axle takes 10 minutes and must be prior to wheel assembly

Constraints:

(precedence constraints among tasks)

- $Axle_F + 10 \leq Wheel_{RF}$; $Axle_F + 10 \leq Wheel_{LF}$
- $Axle_B + 10 \leq Wheel_{RB}$; $Axle_B + 10 \leq Wheel_{LB}$
- $Axle_F + 10 \le Axle_B \text{ or } Axle_B + 10 \le Axle_F$

• ...

Only one shared tool for axle installing, so can't be simultaneous

T W O+ T W O**Cryptarithmetic** (which letter represents which digit?) Variables: F. T. U. W. R. O. C. C. C. Domains: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9} C_1, C_2, C_3 : auxiliary Constraints: variables for carrvover alldiff(F,T,U,W,R,O)A so-called global constraint $Q + Q = R + 10C_1$ involves an arbitrarv $C_1 + W + W = U + 10C_2$ number of variables $C_2 + T + T = 0 + 10C_2$ $C_3 = F$ Constraint hypergraphs R have square (hyper-)nodes for *n*-ary constraints

Zurich University

Real-world CSPs

Zurich University

- Assignment problems e.g., who teaches what class
- **Timetabling** problems e.g., which class is offered when and where?
- **Optimization** with spreadsheets e.g., debugging (Abreu, Riboira & Wotawa, 2012)
- Other **scheduling** tasks e.g., in transportation or factory workflow
- Other **layout** tasks e.g., floor planning or hardware configuration

→ Notice that many real-world problems involve real-valued variables

Exercise: Formulating Sudoku as a CSP → see also P03

Sudoku puzzles are played on a 9x9 board and enjoyed by millions of people daily. The goal is to fill in each cell with a single digit, subject to several constraints:

- Each digit must be present in each row exactly once
- Each digit must be present in each column exactly once
- Each digit must be present in each box exactly once (the 9x9 board consists of 9 non-overlapping 3x3 boxes
 → see thicker lines below)
- Each digit must be consistent with any digit already placed on the original board by the riddle issuer
- Formulate the Sudoku riddle below as a CSP using pen
 & paper (i.e., decide on variables, domains and constraints)

5	3			7				
6			1	9	5			
	9	8					6	
8				6				3
4			8		3			1
7				2				6
	6					2	8	
			4	1	9			5
				8			7	9

Zurich University of Applied Sciences

2. CSP SOLVING

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Standard search formulation

Seriously flawed, thus incremental

Let's start with the straightforward, dumb approach, then fix it

- States are defined by the values assigned so far
 - Initial state: the empty assignment {}
 - Successor function: assign a value to an unassigned variable without conflict with current assignment
 fail if no legal assignment (not fixable!)
 - Goal test: the current assignment is complete
- CSPs all have a common structure

→ This is the same for all CSPs, **no domain-specific adaptations** (transition models etc.) needed! ©

- Every solution appears at depth n (for n variables)
 → use depth-first search
- Path is irrelevant, so can also use complete-state formulation (as with local search)
 → i.e., evolve one state instead of creating new ones
- Branching factor b = (n l)d at depth l
 - → hence $n! d^n$ leaves! $\otimes \otimes \otimes$

Backtracking search

First improvement

- Variable assignments are commutative
 - e.g. [WA = red, then NT = green] same as [NT = green, then WA = red]
 - → Only need to consider assignments to a single variable at each node
 - → b = d, thus there are d^n leaves

Zurich University

Backtracking search Algorithm & suggested improvements

function Backtracking-Search(csp) returns solution/failure return Backtrack({}, csp) function Backtrack (assignment, csp) returns solution/failure if assignment is complete then return assignment for each value in **Order-Domain-Values (var, assignment, csp)** do if value is consistent with assignment then add {var = value} to assignment inferences < Inference (csp, var, value) #optional if inferences \neq failure then #optional add inferences to assignment #optional result \leftarrow Backtrack(assignment, csp) if result \neq failure then return result else remove {var = value} from assignment return failure

General-purpose methods can give huge gains in speed:

- Which variable should be assigned next?
- In what order should its values be tried?
- Can we detect inevitable failure early?
- Can we take advantage of problem structure?
- → can be achieved by implementing the *bold/italic* functions above

All have equal opportunities (3) Neighbors are restricted now (2) SA can only be blue now

Degree heuristic

Choose the variable that adds most constraints on remaining variables
 → In practice: Used as tie-breaker among MRV variables

Which variable should be assigned next?

Ideas for Select-Unassigned-Variable(csp)

Minimum remaining values (MRV):

- Choose the variable with the fewest legal values
 failing fast prunes large portions of the tree
- Can work up to 1'000 times better than picking just the next (or a random) unassigned variable (very problem dependent)

Ideas for Order-Domain-Values(var, assignment, csp)

In what order should its values be tried?

Least constraining value

• Given *var*, **choose** the value that **rules out the fewest values** in the remaining *var* \rightarrow Combining this with the previous 2 heuristics makes 1'000-queens feasible (instead 25)

Ideas for Inference(csp, var, value)

Forward checking

- Idea: Keep track of remaining legal values for unassigned variables
 - → Terminate search when any variable has no legal values

Ideas for Inference(csp, var, value)

Forward checking

- Idea: Keep track of remaining legal values for unassigned variables
 - → Terminate search when any variable has no legal values

New South Wal

asmani

Ideas for Inference(csp, var, value)

Forward checking

- Idea: Keep track of remaining legal values for unassigned variables
 - → Terminate search when any variable has no legal values

Ideas for Inference(csp, var, value)

Forward checking

• Idea: Keep track of remaining legal values for unassigned variables

→ Terminate search when any variable has no legal values

Can we detect inevitable failure early? (contd.)

→ Constraint propagation would repeatedly enforce constraints locally

Ideas for Inference(csp, var, value)

Constraint propagation

Forward checking propagates information from assigned variables only to immediate neighbours (i.e., fails to do so recursively after a change in some domain)
 → e.g., NT and SA cannot both be blue!

Northern

South Australia

New South Wale Victoria

Western Australia

Arc

Arc

Arc

• If X loses a value, neighbors of X need to be rechecked (\rightarrow see AC-3 algorithm in appendix)

Arc

• If X loses a value, neighbors of X need to be rechecked (\rightarrow see AC-3 algorithm in appendix)

Arc

• If X loses a value, neighbors of X need to be rechecked (\rightarrow see AC-3 algorithm in appendix)

26

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Backtracking search Revisiting suggested improvements

return Backtrack({}, csp)

function Backtracking-Search(csp) returns solution/failure

function Backtrack (assignment, csp) returns solution/failure if assignment is complete then return assignment for each value in **Order-Domain-Values (var, assignment, csp)** do if value is consistent with assignment then add {var = value} to assignment inferences \leftarrow Inference (csp, var, value) #optional if inferences \neq failure then #optional add inferences to assignment #optional result \leftarrow Backtrack(assignment, csp) if result \neq failure then return result else remove {var = value} from assignment return failure

General-purpose methods can give huge gains in speed:

- Which variable next? MRV (fewest legal values), degree heuristic (most constraints on rest) on tie
- What value first? Least constraining value
- How **detect failure early**? Constraint propagation via arc consistency
- Can we take advantage of problem structure? → next

Can we take advantage of problem structure?

Exploiting structure in the constraint graph

Example

- Tasmania and mainland are independent subproblems, identifiable as connected components of constraint graph
 can be solved individually, and solution combined
- Suppose each subproblem has c variables (out of n total)
 → Worst-case solution cost is n/c · d^c (linear in n)
- This is a dramatic improvement!
 - E.g., *n* = 80, *d* = 2, *c* = 20:
 - → $2^{80} = 4$ billion years (at 10 million nodes/second)
 - → $4 \cdot 2^{20} = 0.4$ seconds (at 10 million nodes/second)

Can we take advantage of problem structure? Exploiting structure in the constraint graph (contd.)

Tree-structured CSPs

- A (constraint) graph is a tree if any 2 variables are connected by only 1 path (i.e., no loops)
- **Theorem**: If the constraint graph has **no loops**, the CSP can be solved in $O(nd^2)$ time
 - \rightarrow Compare to general CSPs, where worst-case time is $O(d^n)$

D

- → Also applies to logical and probabilistic reasoning
- → Important example of the relation between syntactic restrictions and the complexity of reasoning

C F Algorithm for tree-structured CSPs

B

- Do a topological sort: Choose a variable as root, then order variables from root to leaves such that every node's parent precedes it in the ordering
- Create directed arc-consistency by: For *j* from *n* down to 2, make $(Parent(X_i), X_i)$ arc consistent
- For *j* from 1 to *n*, **assign** X_j consistently with $Parent(X_j)$

Zurich University of Applied Sciences

3. SOLVING CSPS IN PRACTICE

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Exploiting non-optimal structure

Zurich University of Applied Sciences

Nearly tree-structured CSPs

- Many real-world CSPs can be converted to tree-structured problems
 - → then solved by divide & conquer
- ...by choosing a cycle cutset: a set of variables that if removed make the graph a tree

- ...and subsequent cutset conditioning: instantiate (in all ways) the variables in the cutset, then prune choices from remaining variables in the tree
 - → Very fast for small cutset size *c*: Runtime is $O(d^c \cdot (n-c)d^2)$ (linear in *n*)

Other advice

- **Exploiting structure in** the values by breaking symmetry reduces search space up to d! • (e.g., we have to give WA, NT, SA 3 different colors, but have 3! options to do so \rightarrow can be reduced by adding a symmetry-breaking constraint like NT < SA < WA)
- **Local search** (\rightarrow see V04) is very effective for CSPs with complete-state formulations ٠
 - → Min-conflicts heuristic very useful: start with random full assignment, subsequently change the variable that minimizes remaining conflicts
 - \rightarrow E.g., hill climbing search with min-conflicts solves *n*-queens in constant time with high probability (even for n = 10'000'000)
- **Constraint learning** (\rightarrow see appendix) is one of the **most important techniques** in modern ٠ CSP solvers

(together with backtracking search, the MRV / degree- / least constraining value heuristics, and forward checking / arc consistency)

- Trade-off between the cost of enforcing consistency and the reduction in search time ٠ (some researchers favor pure forward checking, some full arc consistency after each assignment \rightarrow full arc consistency pays off for harder CSPs)
- Comparing CSP algorithms is done empirically (no algorithm dominates on all CSPs) ٠

Where's the intelligence?

Zurich University

- If classical search is brute force...
- ... CSP solving enhances it using the following powerful ingredients:
 - General-purpose heuristics (MRV etc. → not problem- or domain specific!)
 - Inference over constraints (constraint propagation → allows e.g. for intelligent backjumping)
 - Exploiting structure in the problem definition to vastly prune the search space (e.g. symmetric values, tree-like constraint graph → implements a general divide & conquer approach)
- CSP solving thus can reduce the **time complexity** of some problems **from exponential to linear**, by **act**ing **more "clever"**

• Human intelligence goes into stating the task as a CSP

Review

- CSPs are a special kind of problem:
 - states defined by values of a fixed set of variables
 - goal test defined by constraints on variable values
- Backtracking = depth-first search with one variable assigned per node
 - Variable ordering and value selection heuristics help significantly
 - Forward checking prevents assignments that guarantee later failure
 - Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The CSP representation allows analysis of problem structure
 - Tree-structured CSPs can be solved in linear time
 - Iterative min-conflicts is usually effective in practice
- Methods can handle problems with up to 100'000 variables, and up to 1'000'000 constraints in practice

Zurich University

Zurich University of Applied Sciences

APPENDIX

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Arc consistency AC-3 Algorithm


```
function AC-3(csp) returns the CSP, possibly with reduced domains
    inputs: csp, a binary CSP with variables (X, D, C)
    local variables: queue, a queue of arcs, initially all the arcs in csp
    while queue is not empty do
         (X_i, X_i) \leftarrow \text{Remove-First(queue)}
        if Revise(csp, X_i, X_i) then
             if size of D_i = 0 then return false
             for each X_k in X_i. Neighbors - \{X_i\} do
                  add (X_{k}, X_{i}) to gueue
    return true
function Revise (csp, X_i, X_i) returns true iff we revise the domain of X_i
    revised \leftarrow false
    for each x in D_i do
        if no value y in D_i allows (x, y) to satisfy the constraint X_i and X_i then
             delete x from D_i
             revised \leftarrow true
    return revised
```

- After applying AC-3, either every arc is consistent or some variable has an empty domain
 → CSP not solvable
- Time complexity: $O(n^2d^3)$ (can be reduced to $O(n^2d^2)$, but detecting all is NP-hard)
- Trivia: Name stems from this algorithm being the third one in the paper (Mackworth, 1977)

Can we detect inevitable failure early? (contd.)

Ideas for Inference(csp, var, value)

Constraint learning

- If Backtrack() fails on X_i, it backs up to the last variable and tries another value
 → would be more intelligent to track back to one of the variables that caused D_i = {}
- Forward checking etc. already has this information
 can be stored in a conflict set
- Constraint learning adds new constraints on the fly for sets of assignments (so-called nogoods) that repeatedly caused Backtrack() to fail

