Artificial Intelligence V03: Problem solving through search

Searching as a problem solving strategy Uninformed search Heuristic (informed) search

Based on material by

- Stuart Russell, UC Berkeley
- Inês de Castro Dutra, Cooperating Intelligent Systems, U. Porto 🥌

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Educational objectives

- Know classical search algorithms and selection criteria based on time and space complexity
- Understand how intelligent behavior evolves out of efficient algorithms
- Know how to inform search methods by heuristics
- Be able to model a real world problem to be solved by searching

"In which we see how an agent can find a sequence of actions that achieves its goals when no single action will do."

1. SEARCHING AS A PROBLEM SOLVING STRATEGY

Example: On holiday in Romania Task: Catch flight that leaves tomorrow from Bucharest

Initial state

Find solution

sequence of cities ٠ e.g., Arad→Sibiu→Fagaras→Bucharest

Problem formulation For deterministic & fully observable environments

- initial state e.g., In (Arad)
- successor function S(x)
 set of action-state pairs, e.g.
 S(Arad) = {<Arad → Zerind; Zerind>, ...}
- goal test explicit or implicit. e.g.
 - x = In(Bucharest) **Or**NoDirt(x)
- path cost (additive)

e.g., sum of distances, number of actions, etc. c (x, a, y) >=0 is the step cost

Selecting a proper state space

- Real world is very complex
 - → state & action space must be abstracted
- Abstract state: set of real states
- Abstract action: complex combination of real actions
 e.g., Arad→Zerind represents a complex set of possible routes, detours, rest stops, etc.
- Abstract solution: **set of real paths** that are solutions in the real world
- For guaranteed realizability, **any** real state In (Arad) **must get to some real state** In (Zerind)
- → See also appendix on modeling

➔ Each abstract action should be easier than the original problem

Suitable agent structure

→ If the task is represented as a graph of atomic states, and the solution is a sequence of state changes → a model based agent may solve it by searching

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle

Note: Optimal solution of n-Puzzle family is NP-hard (\rightarrow see appendix)

- States? integer locations of tiles (ignoring intermediate positions)
- Actions?
- Goal test?
- Path cost?

Start State

Goal State

- States?
- Actions?
- Goal test?
- Path cost?

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle

Note: Optimal solution of n-Puzzle family is NP-hard (\rightarrow see appendix)

- States? integer locations of tiles (ignoring intermediate positions)
- Actions? move blank to left, right, up, down (ignoring unjamming etc.)
- Goal test?
- Path cost?

7	2	4	1	2	
5		9	4	5	
8	3	1	7	8	
Start State				Coal State	

- States?
- Actions?
- Goal test?
- Path cost?

3

Examples of problems solvable by searching

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle

- States? integer locations of tiles (ignoring intermediate positions)
- Actions? move blank to left, right, up, down (ignoring unjamming etc.)
- Goal test? equals given goal state
- Path cost?

7	2	4	1	2	
5		6	4	5	
8	3	1	7	8	
Start State				Goal State	

Note: Optimal solution of n-Puzzle family is NP-hard (\rightarrow see appendix)

- States?
- Actions?
- Goal test?
- Path cost?

3

6

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle

Note: Optimal solution of n-Puzzle family is NP-hard (\rightarrow see appendix) States? integer locations of tiles (ignoring intermediate positions)

- •
- Actions? move blank to left, right, up, down (ignoring unjamming etc.) •
- Goal test? equals given goal state •
- Path cost? 1 per move •

7	2	4		1	2	3
5		6		4	5	6
8	3	1		7	8	
Start State			-		Coal State	

Real-world problem Robotic assembly

- States?
- Actions? ٠
- Goal test? ٠
- Path cost? •

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle

Note: Optimal solution of n-Puzzle family is NP-hard (\rightarrow see appendix)

- States? integer locations of tiles (ignoring intermediate positions) •
- Actions? move blank to left, right, up, down (ignoring unjamming etc.) •
- Goal test? equals given goal state •
- Path cost? 1 per move ٠

Real-world problem

Robotic

- States? real-valued coordinates of robot joint angles; parts to be assembled
- Actions? ٠
- Goal test? ٠
- Path cost? •

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle

z Note: Optimal solution of n-Puzzle family is NP-hard (\rightarrow see appendix)

- States? integer locations of tiles (ignoring intermediate positions)
- Actions? move blank to left, right, up, down (ignoring unjamming etc.)
- Goal test? equals given goal state
- Path cost? 1 per move

Real-world problem

Robotic-

- States? real-valued coordinates of robot joint angles; parts to be assembled
- Actions? continuous motions of robot joints
- Goal test?
- Path cost?

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle

zle Note: Optimal solution of n-Puzzle family is NP-hard (\rightarrow see appendix)

- States? integer locations of tiles (ignoring intermediate positions)
- Actions? move blank to left, right, up, down (ignoring unjamming etc.)
- Goal test? equals given goal state
- Path cost? 1 per move

Real-world problem

Robotic-

- States? real-valued coordinates of robot joint angles; parts to be assembled
- Actions? continuous motions of robot joints
- Goal test? complete assembly
- Path cost?

"Toy" problem: helps to identify strengths and weaknesses of different methods

8-puzzle

- States? integer locations of tiles (ignoring intermediate positions)
- Actions? move blank to left, right, up, down (ignoring unjamming etc.)
- Goal test? equals given goal state
- Path cost? 1 per move

Real-world problem

Robotic-

- States? real-valued coordinates of robot joint angles; parts to be assembled
- Actions? continuous motions of robot joints
- Goal test? complete assembly
- Path cost? execution time

Diversity of search approaches

...solving increasingly complex problem types

Zurich University

Uninformed (blind) search

- All it can do: generate successors of tree-nodes, distinguish goal- from non-goal states
- Suitable environments: fully observable, deterministic, discrete (episodic, static, single agent)

Heuristic (informed) search

Extensions of today's methods exist to **non-deterministic** and **partially observable** as well as **(semi-)dynamic** environments (**online** search) (→ see AIMA, ch. 4.3-4.5)

- Knows whether one non-goal state is "more promising" than another
- Suitable environments: as above, but larger

More informed search methods

Online search

• Environments are **dynamic** (i.e., not fully known from the beginning → percepts become important)

Local search

- Cares only to find a goal state rather then the optimal path
- Suitable environments: also continuous state/action spaces (hill climbing, simulated annealing) Adversarial search
- Search in the face of an opponent (i.e., dynamic multi-agent environments; also stochastic and partially observable forms)

→ this lecture

2. UNINFORMED SEARCH

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Uninformed search

Approach

- Tree search: iteratively expand nodes until a goal node is hit
- Different strategies: order of node expansion

Evaluation criteria for strategies

- completeness: does it always find a solution if one exists?
- optimality: does it always find a least-cost solution?
- time complexity: number of nodes generated/expanded
- space complexity: maximum number of nodes in memory

Time and space complexity are measured in terms of

- *b*: maximum **branching factor** of the search tree
- *d*: depth of the least-cost solution
- *m*: maximum **depth of** the **state space** (may be ∞)

Example

Zurich University of Applied Sciences

Growth of time and memory requirements

 Algorithm: breadth-first search (→ ADS: exponential time & space complexity O(b^d)) Assumptions: b = 10, 1 mio nodes/sec, 1 kB/node Question: what d is easily manageable?

→ See appendix for some **recap** on **complexity theory**

Example

Growth of time and memory requirements

 Algorithm: breadth-first search (→ ADS: exponential time & space complexity O(b^d)) Assumptions: b = 10, 1 mio nodes/sec, 1 kB/node Question: what d is easily manageable?

Depth	Nodes		Time	Ν	/lemory
2	110	.11	milliseconds	107	kilobytes
4	11,110	11	milliseconds	10.6	megabytes
6	10^{6}	1.1	seconds	1	gigabyte
8	10^{8}	2	minutes	103	gigabytes
10	10^{10}	3	hours	10	terabytes
12	10^{12}	13	days	1	petabyte
14	10^{14}	3.5	years	99	petabytes
16	10^{16}	350	years	10	exabytes

- Practical advice: Exponential-complexity search problems cannot be solved by uninformed methods for any but the smallest instances
- → See appendix for some recap on complexity theory

Uninformed search strategies \rightarrow Details: ADS or AIMA ch. 3.4 Trv DLS with l =DFS only 1, l = 2, ... until Expand the shallowest Expand node with Expand doal is reached unexpanded node lowest path cost q(n)deepest node up to level l Criterion Breadth-Uniform-Depth-Depth-Iterative First Cost First Limited Deepening Yes* Yes* Yes, if l > dComplete? Yes No $h^{[C^*/\epsilon]}$ b^{d+1} b^l h^d h^m Time $h[C^*/\epsilon]$ b^{d+1} hmhl bdSpace Optimal? Yes* Yes No No Yes*

Practical advice

- **Depth-first tree search** is a **major work horse** for many AI tasks (due to linear space complexity)
- **Iterative deepening** is **not wasteful** (a tree with nearly the same *b* at each level has most nodes in the bottom level → generating higher-level states multiple times doesn't matter)
- **Iterative deepening** is **preferred uninformed** search **method** (for large search space and *d* is unknown)
- **Bi-directional search** can **help** a lot, but $O(b^{d/2})$ space complexity is major drawback

Repeated states

Problem

• Failure to detect repeated states can turn a linear problem into an exponential one!

Solution

- Graph search: remember nodes already expanded, and don't revisit them
 - → keep a list of explored nodes

Practical advice

- All previous strategies can be implemented as both tree- or graph search
- If additional space complexity is affordable determines whether graph search is possible

3. HEURISTIC (INFORMED) SEARCH

Zurich University of Applied Sciences and Arts InIT Institute of Applied Information Technology (stdm)

Tree-/graph search using additional knowledge ... beyond the definition of the problem

Best-first search

- Select the node to be expanded next based on some evaluation function f(node)
- Typically, f is implemented by a heuristic h(node) (measure of "desirability")
- h(node) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Tree-/graph search using additional knowledge ... beyond the definition of the problem

Best-first search

- Select the node to be expanded next based on some evaluation function f(node)
- Typically, f is implemented by a heuristic h(node) (measure of "desirability")
- h(node) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Tree-/graph search using additional knowledge ...beyond the definition of the problem

Best-first search

- Select the node to be expanded next based on some evaluation function f(node)
- Typically, f is implemented by a heuristic h(node) (measure of "desirability")
- h(node) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Tree-/graph search using additional knowledge ... beyond the definition of the problem

Best-first search

- Select the node to be expanded next based on some evaluation function f(node)
- Typically, f is implemented by a heuristic h(node) (measure of "desirability")
- h(node) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Tree-/graph search using additional knowledge ... beyond the definition of the problem

Best-first search

- Select the node to be expanded next based on some evaluation function f(node)
- Typically, f is implemented by a heuristic h(node) (measure of "desirability")
- h(node) facilitates pruning of the search tree: options are eliminated without examination

What could be a good heuristic for the distance to Bucharest (being in Arad)?

Typical implementations

Greedy search

- Expand node with lowest subsequent cost estimate according to some h, i.e. f(n) = h(n)
- *n* may only *appear* to be closest to the goal

A*

- Obvious improvement: **consider full path cost**, i.e. f(n) = g(n) + h(n)(g(n) cost so far to reach n, h(n) estimated cost to goal from n, f(n) estimated total path cost)
- h(n) needs to be admissible: $\leq true \ cost$ and ≥ 0 (e.g., $h_{straight \ line \ distance}$)
- A* search is optimal, complete
- A* has time complexity $O(2^{(error of h) \cdot d})$ and keeps all nodes in memory

SMA* - simplified memory-bounded A*

- A* usually runs out of space first → SMA* overcomes this by
- ...filling the memory up, then starting to forget the worst expanded nodes
- ...ancestors of forgotten **subtrees remember** the value of the **best path** within them
- ...thus, subtrees are only regenerated if no better solution exists

A* Example

Succeeding with search

Learning to search

- Learn a heuristic function: use inductive supervised learning on features of a state
- Alternative: construct a metalevel state space, consisting of all internal states of search program Example: For A* searching for a route in Romania, the search tree is its internal state
- Actions in metalevel space: computations that alter the metalevel state In the example: Expanding a node
- Solution in metalevel space: a path as depicted on the last slide
 - → can be input to machine learning algorithms to avoid unnecessary expansions

Practical advice

- **A*** **is impractical** for large scale problems
- Practical, robust choice: SMA*
- Have good heuristic functions! A well-designed heuristic would have $b^* \approx 1$ (b^* is the effective branching factor)

A closer look on heuristic functions Example: 8-puzzle

Zurich University of Applied Sciences

Two proposals – which is better?

- $h_1(n) =$ number of misplaced tiles
- $h_2(n) = \text{total Manhattan distance}$ (i.e., no. of horizontal/vertical squares from desired location of each tile)

Dominance The 8-puzzle example continues

Zurich University of Applied Sciences

If $h_2(n) \ge h_1(n) \forall n \Rightarrow h_2$ dominates h_1 and is better for search

Typical search costs

Algorithm	#nodes expanded with $d = 14$	#nodes expanded with $d = 24$
Iterative deepening	3'473'941	~54'000'000'000
$A^{\star}\left(h_{1} ight)$	539	39'135
A* (h ₂)	113	1'641

Simple improvement

- Given any admissible heuristics h_a , h_b :
- $h(n) = \max(h_a(n), h_b(n))$ is also admissible and dominates h_a, h_b

Relaxed problems Improving heuristics intelligently

Relaxation as a key

- Admissible heuristics can be derived from the exact solution cost of a relaxed version of the problem
- A relaxed problem has fewer constraints on the actions
- Relaxation can be automatized! E.g., «Absolver» by (Prieditis, 1993) found best heuristic for 8-puzzle, first heuristic for Rubik's cube

Examples of relaxed 8-puzzle rules

- If each tile can move anywhere (in 1 step), then $h_1(n)$ gives the shortest solution
- If each tile can move to any adjacent square, then $h_2(n)$ gives the shortest solution

Intuition

- Removing constraints adds edges to the state graph
- Additional edges might provide "short cuts"
- The optimal solution cost of a relaxed problem ("short cut") can be no greater than the optimal solution cost of the real problem

Where's the intelligence?

Man vs. machine

Uninformed search

- In the abstraction of the problem
- In the choice of algorithm that is optimal for the problem at hand
- In the systematic exploration of the state space graph

Heuristic search

• Additionally, in the heuristic function

Originally written in German during his research stay at ETH

 \rightarrow see also: Polya, «How to solve it - a new aspect of mathematical method», 1945

solution. Draw a diagram of the complete state space.

Formulate the problem precisely:

 Implement and solve the problem optimally: Use an appropriate search algorithm. Is it a good idea to check for repeated states?

Make only those distinctions necessary to ensure a valid

• Why do you think people have a hard time solving this puzzle, given that the state space is so simple?

٠

Exercise: Missionaries & cannibals (AIMA ex. 3.9)

Three missionaries and 3 cannibals are on one side of a river, along with a boat that can hold one or two people. Find a way to get everyone to the other side, without ever leaving a group of missionaries in one place outnumbered by the cannibals in that place.

aw

Review

- Search as an approach to AI exists in its current form more or less since AI's inception
- Extensions of search algorithms exist to non-deterministic and partially observable environments as well as online search
- **Problem formulation** usually **requires abstracting** away real-world details to define a state space that can feasibly be explored
- Iterative deepening search uses only linear space and not much more time than other uninformed algorithms
- Graph search can be exponentially more efficient than tree search
- Good heuristics can dramatically reduce search cost
- A* search expands lowest g + h
 → complete and optimal, also optimally efficient (up to tie-breaks, for forward search)
- Admissible heuristics can be derived from exact solution of relaxed problems

Zurich University

APPENDIX

Fun fact: implement depth-first search in a maze by keeping your left hand on the wall.

On modeling and abstraction

Zurich University

Quoted from AIMA, p. 68-69, sec. 3.1.2

- A model [is] an abstract mathematical description [...] and not the real thing
- The process of removing detail from a representation is called abstraction
- The abstraction is *valid* if we can *expand* any abstract solution into a solution in the more detailed world
- The abstraction is *useful* if carrying out each of the actions in the abstraction is *easier* than the original problem
- The choice of a good abstraction thus involves removing as much detail as possible while retaining validity and ensuring that the abstract actions are easy to carry out
- ➔ Were it not for the ability to construct useful abstractions, intelligent agents would be completely swamped by the real world

Recap on complexity theory

Zurich University

Problems are classified to be part of (attention: only intuitive "definitions")

- P can be solved in polynomial time by a deterministic algorithm
 → deemed to be solvable «efficiently»
- **NP** can only be solved <u>efficiently (i.e., in polynomial time)</u> by guessing the solution (i.e., by a non-deterministic algorithm)

When people talk about **efficient computation**, this **always means** (at most) **polynomial time**: *efficient~polynomial time*.

More terminology

- NP-hard a problem x is said to be NP-hard if all problems in NP can be reduced to (i.e., converted into / stated as) x (i.e., can be solved by an algorithm for x) efficiently
 → Example: Traveling salesman problem (i.e., any problem in NP is at most as hard as x)
- NP-complete a problem x is said to be NP-complete if it is NP-hard and in NP

 → Example: The satisfiability problem (SAT) is there an assignment of truth values to make a given formula of propositional logic true? (→ see V06 and AIMA ch. 7.5)

...which is all good (i.e., we don't have to care for efficiency) if P = NP (tremendously unlikely!)

Further reading

- AIMA appendix A.1 (< 3 pages!)
- J. Koehler's lecture slides on complexity and AI: <u>https://user.enterpriselab.ch/~takoehle/teaching/ai/ProblemComplexity.pdf</u>
- Some more intuition: <u>http://stackoverflow.com/questions/1857244/what-are-the-differences-between-np-np-complete-and-np-hard</u>

Pseudocode for general tree- and graph search

function Tree-Search (problem, frontier) returns a solution, or failure

```
frontier ← Insert(Make-Node(Initial-State(problem)), frontier)
loop do
    if frontier is empty then return failure
    node ← Remove-Front(frontier) #choice of picked node defined by strategy
    if Goal-Test(problem) applied to State(node) succeeds return node
    frontier ← InsertAll(Expand(node, problem), frontier)

function Graph-Search(problem, frontier) returns a solution, or failure
    frontier ← Insert(Make-Node(Initial-State(problem)), frontier)
    explored ← empty
    loop do
        if frontier is empty then return failure
        node ←Remove-Front(frontier) #choice of picked node defined by strategy
    explored ← Insert(node, explored)
    if Goal-Test(problem) applied to State(node) succeeds return node
    frontier ← InsertAll(Expand(node, problem), frontier) only if not in frontier or explored set
```

→ Bold italic font shows the additions that handle repeated states in graph search

States

- $\theta = (M, C, B)$ signifies the number of missionaries, cannibals, and boats on the left bank
- The start state is (3.3.1) and the goal state is (0.0.0)

Missionaries & cannibals (contd.)

Actions (successor function)

- 10 possible, but only 5 available each move due to boat
- One cannibal/missionary crossing $L \rightarrow R$: subtract (0,1,1) or (1,0,1)
- Two cannibal/missionaries crossing $L \rightarrow R$: subtract (0,2,1) or (2,0,1) One cannibal/missionary crossing $R \rightarrow L$: add (1,0,1) or (0,1,1) Two cannibals/missionaries crossing $R \rightarrow L$: add (2,0,1) or (0,2,1) ٠
- •
- ٠
- One cannibal and one missionary crossing: add/subtract (1,1,1) ٠

Source: http://www.cse.msu.edu/~michmer3/440/Lab1/cannibal.html

Missionaries & cannibals states

- Assumes that passengers have to get out of the boat after the trip
- Red states = missionaries get eaten

Breadth-first search (4 iterations) on missionaries & cannibals

States are generated by applying

- +/- (1,0,1)
- +/- (0,1,1)
- +/- (2,0,1)
- +/- (0,2,1)
- +/- (1,1,1)

Red states = missionaries get eaten Yellow states = repeated states

Breadth-first search (final state) on missionaries & cannibals

- Breadth first search expanded 48 nodes
- This is an optimal solution (minimum number of crossings)
- Depth-first search expanded 30 nodes
- ...if repeated states are checked, otherwise we end up in an endless loop

