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P04 – Decision Trees 

1. Background 
 
In this lab you will use decision trees to classify offers of used cars. This lab is designed 
to give you a good understanding of how decision trees work and how to apply them. 
You should also get a feeling for what overfitting is and how to handle it. The accompa-

nying template decisiontrees_TASK.ipynb is an IPython notebook. If these note-

books are new to you, have a look at Section 3.  
 
Generally, decision trees are categorized into two classes: binary and non-binary. The 
binary decisions trees are more common in machine learning because of their reasona-
ble computational complexity. Let’s assume that there is a trained binary decision tree. 
A trained binary decision tree contains information to make a decision at any node of 
the tree (it knows which feature to split on and the corresponding decision criterion or 
threshold). Additionally, the class probabilities of the training samples are saved at the 
leaves of the tree.  
 
The evaluation (test) procedure of a binary tree is as follows: 

 A test sample is routed down the tree based on the binary decisions according 
the certain features at any given node 

 Once the sample reaches a leaf, the class is predicted based on the class prob-
ability of training samples existing at that leaf 
 

 
Figure 1: Routing a test sample down the tree to arrive at a probabilistic classification. 

 
Training a classification tree: 

 Step 1: Find the most discriminant feature for training 

 Step 2: Compute the best decision threshold 

 Step 3: Split the training data based on the threshold and chosen feature 

 Step 4: Create a subtree for each split, go to 1 until a stopping criterion is met 
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Examples of stopping criterion for training decision trees are as follows: 

 Depth of the tree 

 Number of remaining training samples in leaves 
 
The most discriminant feature per node can be determined using one of the following 
criterions: 

 Gini impurity (see this lab) 

 Information Gain (see lecture) 

 Variance reduction 
 

 
Figure 2: Using the Information Gain criterion to select the most discriminant attribute for split-

ting. Split 2 (lower right) gives the most information gain and is thus preferred. 
 

Random Forest (RF) introduced by Breiman is an extension of decision trees. A number 
of decision trees (an ensemble) are trained based on random subsets of features and 
training samples and then their decisions are combined, leading to robust classifiers 
(see V09). You can gain additional information through watching the following lecture: 
https://www.youtube.com/watch?v=3kYujfDgmNk [optional]. 
 
Another way of building an ensemble is by using AdaBoost. The essential idea of the 
AdaBoost algorithm is to combine an ensemble of simple weak-learners (with binary 
classification accuracy barely over 50%) in order to develop a complex model. The 
weak learners in our lab are decision trees. Using AdaBoost, we iteratively train deci-
sion trees to correct the missclassifications of the previous trees.  
 
Here are the steps for implementing AdaBoost: 

 Step 1: Train a classifier based on the weighted samples (initially equal) 

 Step 2: Compute predictions 

 Step 3: Compute the weighted error rate based on predictions 

https://en.wikipedia.org/wiki/Leo_Breiman
https://www.youtube.com/watch?v=3kYujfDgmNk
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 Step 4: Update the weights for each sample 

 Step 5: Go to 1 on the re-weighted examples until stopping criterion is met 
 
The weighted sum of all decision tree classifications makes up the final decision of an 
AdaBoost classifier. The decision weights are antiproportional to the weighted error rate 
computed in step 3. These weights are normalized to one once all decision trees are 
trained. Further explanation is provided in the following video: 
https://www.youtube.com/watch?v=ix6IvwbVpw0 [optional]. 
 

2. Exercise  
 
At the top of the template, there are some helper functions, which should make it easier 
for you to implement your own decision trees, as well as some data preprocessing 
code. The main class of helper functions is called “Tree_node”. Overall, you are asked 
to complete the following tasks:  
 

1. Start small 
At first you are asked to train a tree-stump (a tree of depth 1). In order to do so 

you need to complete the function find_best_split() which finds the best 

split with respect to the Gini impurity criterion. Don’t get fancy here – it is best to 
try every possible split (this is why decision trees are slow for numerical varia-

bles). The function find_best_split()finds the best split through an exhaus-

tive search of all possible features and split values. The training data and target 
column (labels) are inputs of this function and it returns the best split and the 
corresponding divided set.  

During working on find_best_split(), you will make use of the following 

functions: 

 divideset(training_data, given_feature, value): divides 

the training data into two subsets based on a binary decision of a value 
for a given feature 

 gini_impurity(data, labels, weights=None): computes the 

Gini impurity of a subset of data given the labels. In order to handle cost-
aware loss functions later on, we can incorporate weights in the calcula-
tion; however, the classes are equally weighted by default 

 
2. Confusing error rates 

Compute the confusion matrix (predicted vs actual label1), as well as the overall 
prediction error, for the training set and the test set. Any comments? 

                                            
1 See https://en.wikipedia.org/wiki/Confusion_matrix for an explanation. 

https://www.youtube.com/watch?v=ix6IvwbVpw0
https://en.wikipedia.org/wiki/Confusion_matrix
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 Hint: Use the classify method from the  Tree_node class to compute 

the predictions for a confusion matrix 
 

3. We have to go deeper2 

Complete the train_tree() method to recursively train deeper trees. If you 

have reached a leaf, return in_data, otherwise return a new Tree_node. 

Train a tree of depth 5: does this tree perform better than the tree stump from 
task 2.1? 

 
4. This is much easier!  

Use the sk-learn3 class DecisionTreeClassifier() to train another 

tree of depth 5 (also based on the Gini impurity). Does this perform different 
from your own implementation?  

 Hint: you have to use the encoded versions of the data because the Deci-

sionTreeClassifier only takes numerical labels. 

 
5. Machine-learners cookbook,  

    step 1: throw more computing power at the problem 

    step 2: if necessary repeat step 1 

Create your own implementation of AdaBoost by completing the skeleton 

ada_boost_trees. For performance reasons, base this algorithm on the De-

cisionTreeClassifier and not on your own decision tree implementation. 

Use decision trees of depth 5 as base classifiers. Does the boosted tree perform 
better? 
 

6. This is much easier! v2.0 

Compare your AdaBoost implemention against sk-learn’s AdaBoostClas-

sifier: are there significant performance differences? 

 

 
 
 
 
 
 

                                            
2 A famous meme in machine learning due to the «Inception» architecture of deep neural networks; the 
curious finds satisfaction at https://medium.com/initialized-capital/we-need-to-go-deeper-a-practical-
guide-to-tensorflow-and-inception-50e66281804f. 
3 Scikit-learn is the standard machine learning library in Python: https://scikit-learn.org/stable/.  

https://medium.com/initialized-capital/we-need-to-go-deeper-a-practical-guide-to-tensorflow-and-inception-50e66281804f
https://medium.com/initialized-capital/we-need-to-go-deeper-a-practical-guide-to-tensorflow-and-inception-50e66281804f
https://scikit-learn.org/stable/
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3. A quick introduction to IPython 
 
IPython notebooks (also called Jupyter notebooks4 since a while, where project Jupyter 
offers kernels also for many other languages besides Python) are basically code & doc-
umentation together in your browser for exploratory work. The following slides give an 
overview and quick-start guide: 

 

 
 

                                            
4 See https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html for more 
background, a brief description of the main concepts, and further links. 

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html
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