

Artificial Intelligence InIT Institute of Applied Information Technology (stdm/tugg/amir) Page 1 of 6

School of
Engineering

P04 – Decision Trees

1. Background

In this lab you will use decision trees to classify offers of used cars. This lab is designed
to give you a good understanding of how decision trees work and how to apply them.
You should also get a feeling for what overfitting is and how to handle it. The accompa-

nying template decisiontrees_TASK.ipynb is an IPython notebook. If these note-

books are new to you, have a look at Section 3.

Generally, decision trees are categorized into two classes: binary and non-binary. The
binary decisions trees are more common in machine learning because of their reasona-
ble computational complexity. Let’s assume that there is a trained binary decision tree.
A trained binary decision tree contains information to make a decision at any node of
the tree (it knows which feature to split on and the corresponding decision criterion or
threshold). Additionally, the class probabilities of the training samples are saved at the
leaves of the tree.

The evaluation (test) procedure of a binary tree is as follows:

 A test sample is routed down the tree based on the binary decisions according
the certain features at any given node

 Once the sample reaches a leaf, the class is predicted based on the class prob-
ability of training samples existing at that leaf

Figure 1: Routing a test sample down the tree to arrive at a probabilistic classification.

Training a classification tree:

 Step 1: Find the most discriminant feature for training

 Step 2: Compute the best decision threshold

 Step 3: Split the training data based on the threshold and chosen feature

 Step 4: Create a subtree for each split, go to 1 until a stopping criterion is met

Artificial Intelligence InIT Institute of Applied Information Technology (stdm/tugg/amir) Page 2 of 6

School of
Engineering

Examples of stopping criterion for training decision trees are as follows:

 Depth of the tree

 Number of remaining training samples in leaves

The most discriminant feature per node can be determined using one of the following
criterions:

 Gini impurity (see this lab)

 Information Gain (see lecture)

 Variance reduction

Figure 2: Using the Information Gain criterion to select the most discriminant attribute for split-

ting. Split 2 (lower right) gives the most information gain and is thus preferred.

Random Forest (RF) introduced by Breiman is an extension of decision trees. A number
of decision trees (an ensemble) are trained based on random subsets of features and
training samples and then their decisions are combined, leading to robust classifiers
(see V09). You can gain additional information through watching the following lecture:
https://www.youtube.com/watch?v=3kYujfDgmNk [optional].

Another way of building an ensemble is by using AdaBoost. The essential idea of the
AdaBoost algorithm is to combine an ensemble of simple weak-learners (with binary
classification accuracy barely over 50%) in order to develop a complex model. The
weak learners in our lab are decision trees. Using AdaBoost, we iteratively train deci-
sion trees to correct the missclassifications of the previous trees.

Here are the steps for implementing AdaBoost:

 Step 1: Train a classifier based on the weighted samples (initially equal)

 Step 2: Compute predictions

 Step 3: Compute the weighted error rate based on predictions

https://en.wikipedia.org/wiki/Leo_Breiman
https://www.youtube.com/watch?v=3kYujfDgmNk

Artificial Intelligence InIT Institute of Applied Information Technology (stdm/tugg/amir) Page 3 of 6

School of
Engineering

 Step 4: Update the weights for each sample

 Step 5: Go to 1 on the re-weighted examples until stopping criterion is met

The weighted sum of all decision tree classifications makes up the final decision of an
AdaBoost classifier. The decision weights are antiproportional to the weighted error rate
computed in step 3. These weights are normalized to one once all decision trees are
trained. Further explanation is provided in the following video:
https://www.youtube.com/watch?v=ix6IvwbVpw0 [optional].

2. Exercise

At the top of the template, there are some helper functions, which should make it easier
for you to implement your own decision trees, as well as some data preprocessing
code. The main class of helper functions is called “Tree_node”. Overall, you are asked
to complete the following tasks:

1. Start small
At first you are asked to train a tree-stump (a tree of depth 1). In order to do so

you need to complete the function find_best_split() which finds the best

split with respect to the Gini impurity criterion. Don’t get fancy here – it is best to
try every possible split (this is why decision trees are slow for numerical varia-

bles). The function find_best_split()finds the best split through an exhaus-

tive search of all possible features and split values. The training data and target
column (labels) are inputs of this function and it returns the best split and the
corresponding divided set.

During working on find_best_split(), you will make use of the following

functions:

 divideset(training_data, given_feature, value): divides

the training data into two subsets based on a binary decision of a value
for a given feature

 gini_impurity(data, labels, weights=None): computes the

Gini impurity of a subset of data given the labels. In order to handle cost-
aware loss functions later on, we can incorporate weights in the calcula-
tion; however, the classes are equally weighted by default

2. Confusing error rates

Compute the confusion matrix (predicted vs actual label1), as well as the overall
prediction error, for the training set and the test set. Any comments?

1 See https://en.wikipedia.org/wiki/Confusion_matrix for an explanation.

https://www.youtube.com/watch?v=ix6IvwbVpw0
https://en.wikipedia.org/wiki/Confusion_matrix

Artificial Intelligence InIT Institute of Applied Information Technology (stdm/tugg/amir) Page 4 of 6

School of
Engineering

 Hint: Use the classify method from the Tree_node class to compute

the predictions for a confusion matrix

3. We have to go deeper2

Complete the train_tree() method to recursively train deeper trees. If you

have reached a leaf, return in_data, otherwise return a new Tree_node.

Train a tree of depth 5: does this tree perform better than the tree stump from
task 2.1?

4. This is much easier!

Use the sk-learn3 class DecisionTreeClassifier() to train another

tree of depth 5 (also based on the Gini impurity). Does this perform different
from your own implementation?

 Hint: you have to use the encoded versions of the data because the Deci-

sionTreeClassifier only takes numerical labels.

5. Machine-learners cookbook,

 step 1: throw more computing power at the problem

 step 2: if necessary repeat step 1

Create your own implementation of AdaBoost by completing the skeleton

ada_boost_trees. For performance reasons, base this algorithm on the De-

cisionTreeClassifier and not on your own decision tree implementation.

Use decision trees of depth 5 as base classifiers. Does the boosted tree perform
better?

6. This is much easier! v2.0

Compare your AdaBoost implemention against sk-learn’s AdaBoostClas-

sifier: are there significant performance differences?

2 A famous meme in machine learning due to the «Inception» architecture of deep neural networks; the
curious finds satisfaction at https://medium.com/initialized-capital/we-need-to-go-deeper-a-practical-
guide-to-tensorflow-and-inception-50e66281804f.
3 Scikit-learn is the standard machine learning library in Python: https://scikit-learn.org/stable/.

https://medium.com/initialized-capital/we-need-to-go-deeper-a-practical-guide-to-tensorflow-and-inception-50e66281804f
https://medium.com/initialized-capital/we-need-to-go-deeper-a-practical-guide-to-tensorflow-and-inception-50e66281804f
https://scikit-learn.org/stable/

Artificial Intelligence InIT Institute of Applied Information Technology (stdm/tugg/amir) Page 5 of 6

School of
Engineering

3. A quick introduction to IPython

IPython notebooks (also called Jupyter notebooks4 since a while, where project Jupyter
offers kernels also for many other languages besides Python) are basically code & doc-
umentation together in your browser for exploratory work. The following slides give an
overview and quick-start guide:

4 See https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html for more
background, a brief description of the main concepts, and further links.

https://jupyter-notebook-beginner-guide.readthedocs.io/en/latest/what_is_jupyter.html

Artificial Intelligence InIT Institute of Applied Information Technology (stdm/tugg/amir) Page 6 of 6

School of
Engineering

